Morphological and ecological data confirm Reithrodontomys cherrii as a distinct species from Reithrodontomys mexicanus

Autores/as

Palabras clave:

Cricetidae, cryptic species, environmental space, harvest mice, integrative taxonomy, skull morphometry.

Resumen

The integrative taxonomy approach has recently been widely suggested in systematic studies. Lines of evidence such as the geometric morphometrics and ecological analyses have been useful for discriminating between genetically well-differentiated species. Within the genus Reithrodontomys, R. mexicanus is one of the more taxonomically complex species, being considered a cryptic species complex. R. cherrii was considered a subspecies of R. mexicanus, until molecular evidence raised it to the species-level. Herein, we evaluate these two forms using morphological and ecological data based on the premise that they constitute genetically differentiated species. We carried out geometric morphometric analyses on dorsal and ventral views of the skull. Landmark and semi-landmark configurations for both views of the skull were selected based on previous studies of cricetid rodents. We tested the presence of sexual dimorphism, and the skull shape and size differences between species on both cranial views. Additionally, we characterized the environmental space of each species habitat using bioclimatic variables, elevation, and the Normalized Difference Vegetation Index (NDVI). Females and males of R. mexicanus and R. cherrii did not show sexual dimorphism in shape or size of both skull views. We found significant differences between the two species in both shape and size of the skull. Cranial structures of the ventral view were more useful to differentiate both species. R. mexicanus exhibited a broader environmental space than R. cherrii, with relatively similar values of temperature and elevation, but not of precipitation. The pairwise comparison showed significant differences in the majority of the environmental variables analyzed. Although for each view, we found statistical differences in the skull shape of R. cherrii and R. mexicanus, the ventral side showed major resolutive power differentiating both species. Our findings suggest that R. cherrii tends to have a larger skull than R. mexicanus. However, the morphological and pelage coloration similarity between these species reported in the past, could explain the previous inclusion of R. cherrii as a subspecies of R. mexicanus. R. mexicanus occurs in a variety of vegetation-types coinciding with the broader environmental space that it occupies compared to that of R. cherrii. The natural areas where both species are distributed were associated with high NDVI values. Our results complement the molecular evidence and, under an integrative taxonomy approach, support R. cherrii as a different species from R. mexicanus.

Citas

ADAMS, D. C., AND E. OTÁROLA-CASTILLO. 2013. Geomorph: An R package for the collection and analysis of geometric morphometric shape data. Methods in Ecology and Evolution 4:393-399.

ALLEN, J. A. 1891. Notes on a collection of mammals from Costa Rica. Bulletin of the American Museum of Natural History 3:203-218.

ALLEN, J. A. 1895. On the species of the genus Reithrodontomys. Bulletin of the American Museum of Natural History 7:7-143.

ALSTRÖM, P., P. C. RASMUSSEN, U. OLSSON, AND P. SUNDBERG. 2008. Species delimitation based on multiple criteria: the Spotted Bush Warbler Bradypterus thoracicus complex (Aves: Megaluridae). Zoological Journal of the Linnean Society 154:291-307.

ANDERSON, M. J. 2001. A new method for non-parametric multivariate analysis of variance. Austral Ecology 26:32-46.

ARELLANO, E. 2015. Genus Reithrodontomys Giglioli, 1874. Pp. 61-63, in Mammals of South America, vol. 2: Rodents (Patton, J. L., U. F. Pardiñas, and G. D’Elía, eds.). University of Chicago Press. Illinois, U.S.A.

ARELLANO, E., D. S. ROGERS, AND F. A. CERVANTES. 2003. Genic differentiation and phylogenetic relationships among tropical harvest mice (Reithrodontomys: subgenus Aporodon). Journal of Mammalogy 84:129-143.

ARELLANO, E., F. GONZÁLEZ-COZÁTL, AND D. S. ROGERS. 2005. Molecular systematics of Middle American harvest mice Reithrodontomys (Muridae), estimated from mitochondrial cytochrome b gene sequences. Molecular Phylogenetics and Evolution 37:529-540.

ARELLANO, E., D. S. ROGERS, AND F. X. GONZÁLEZ-CÓZATL. 2006. Sistemática Molecular del género Reithrodontomys. Pp. 27-35, in Genética y Mamíferos Mexicanos: Presente y Futuro (Vázquez- Domínguez, E., and D. J. Hafner, eds.). New Mexico Museum of Natural History and Science Bulletin 32:1-73.

ARELLANO, E., J. A. GUERRERO, AND D. S. ROGERS. 2012. Variación morfométrica y alometría del crecimiento de Reithrodontomys mexicanus (Rodentia: Muridae) de Oaxaca, México. Pp. 35-45, in Estudio Sobre la Biología de Roedores Silvestres Mexicanos (Cervantes, F. A., and C. Ballesteros-Barrera, eds.). Creativa Impresores S. A., México City, México.

BARÄŒIOVÁ, L. 2009. Advances in insectivore and rodent systematics due to geometric morphometrics. Mammal Review 39:80-91.

BOGDANOWICZ, W., J. JUSTE, R. D. OWEN, AND A. SZTENCEL. 2005. Geometric morphometrics and cladistics: testing evolutionary relationships in mega- and microbats. Acta Chiropterologica 7:39-49.

BOOKSTEIN, F. L. 1991. Morphometric tools for landmark data. Geometry and biology. Cambridge University Press. New York, U.S.A.

BOOKSTEIN, F. L. 1997. Landmark methods for forms without landmarks: Morphometrics of group differences in outline shape. Medical Image Analysis 1:225-43.

BRADLEY, R. D. 2017. Genus Reithrodontomys. Pp. 367-383, in Handbook of the Mammals of the World: Rodents II (Wilson, D. E., T. E. Lacher, and R. A. Mittermeier, eds.). Lynx Edicions. Barcelona, Spain.

CAMUL, R., AND P. D. POLLY. 2005. Phylogenetic and environmental components of morphological variation: skull, mandible, and molar shape in Marmots (Marmota, Rodentia). Evolution 59:2460-2472.

COLLYER, M. L., AND D. C. ADAMS. 2018. RRPP: An r package for fitting linear models to highâ€dimensional data using residual randomization. Methods in Ecology and Evolution 9:1772-1779.

CORDEIRO-ESTRELA, P., M. BAYLAC, D. CHRISTIANE, AND J. POLOP. 2008. Combining geometric morphometrics and pattern recognition to identify interspecific patterns of skull variation: case study in sympatric Argentinian species of the genus Calomys (Rodentia: Cricetidae: Sigmodontinae). Biological Journal of the Linnean Society 94:365-378.

DAYRAT, B. 2005. Towards integrative taxonomy. Biological Journal of Linnean Society 85:407-415.

DE QUEIROZ, K. 1998. The general lineage concept of species, species criteria, and the process of speciation. Endless forms: species and speciation.

DE QUEIROZ, K. 2007. Species concepts and species delimitation. Systematic Biology 56:879-886.

ESRI. 2020. ArcGIS Desktop Release 10.8. Environmental System Research Institute, Inc. Redlands. California, U.S.A.

FICK, S. E., AND R. J. HIJMANS. 2017. WorldClim 2: new 1â€km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37:4302-4315.

GARDNER, A. L., AND M. D. CARLETON. 2009. A new species of Reithrodontomys, subgenus Aporodon (Cricetidae: Neotominae), from the highlands of Costa Rica, with comments on Costa Rican and Panamanian Reithrodontomys. Bulletin of the American Museum of Natural History 331:157-182.

GÓMEZ, L. D. 1986. Vegetación de Costa Rica, apuntes para una biogeografía costarricense: Vegetación y Clima de Costa Rica Volumen 1. Editorial Universidad Estatal a Distancia. San José, Costa Rica.

GOODALL, C. 1991. Procrustes methods in the statistical analysis of shape. Journal of the Royal Statistical Society Series B (Statistical Methodology) 53:285-339.

GRAHAM, C. H., ET AL. 2004. Integrating phylogenetics and environmental niche models to explore speciation mechanism in dendrobatid frogs. Evolution 58:1781-1793.

GUEVARA, L., B. E. GERSTNER, J. M. KASS, AND R. P. ANDERSON. 2018. Toward ecologically realistic predictions of species distributions: A crossâ€time example from tropical montane cloud forests. Global Change Biology 24:1511-1522.

HALL, E. R. 1981. The Mammals of North America 2nd ed. John Wiley and Sons, Inc. New York, U.S.A.

HARDY, D. K., F. X. GONZÁLEZ-CÓZATL, E. ARELLANO, AND D. S. ROGERS. 2013. Molecular phylogenetics and phylogeography structure of Sumichrast´s harvest mouse (Reithrodontomys sumichrasti: Cricetidae) based on mitochondrial and nuclear DNA sequences. Molecular Phylogenetics and Evolution 68:282-292.

HOOPER, E. T. 1952. A systematic review of harvest mice (genus Reithrodontomys) of Latin America. Miscellaneous Publications Museum of Zoology, University of Michigan 77:1-255.

HOOPER, E. T. 1959. The glans penis in five genera of cricetid rodents. Occasional Papers of the Museum of Zoology, University of Michigan 613:1-11.

HOWELL, A. H. 1914. Revision of the American harvest mice (genus Reithrodontomys). North American Fauna 36:1-97.

HUNTINGTON, J. L., ET AL. 2017. Climate Engine: cloud computing and visualization of climate and remote sensing data for advanced natural resource monitoring and process understanding. Bulletin of the American Meteorological Society 98:2397-2410.

JACCARD, P. 1912. The distribution of the flora in the alpine zone. 1. New Phytologist 11:37-50.

KRYŠTUFEK, B., G. SHENBROT, T. KLENOVŠEK, AND F. JANŽEKOVIČ. 2021. Geometric morphometrics of mandibular shape in the dwarf fat-tailed jerboa: relevancy for trinomial taxonomy. Zoological Journal of the Linnean Society 192:1363-1372.

KUBIAK, B. B., ET AL. 2017. Can niche modeling and geometric morphometrics document competitive exclusion in a pair of subterranean rodents (genus Ctenomys) with tiny parapatric distributions? Scientific Reports 7:1-13.

LEACHÉ, A. D., ET AL. 2009. Quantifying ecological, morphological, and genetic variation to delimit species in the coast horned lizard species complex (Phrynosoma). Proceedings of the National Academy of Sciences 106:12418-12423.

LU, Y., ET AL. 2015. Ecosystem health towards sustainability. Ecosystem Health and Sustainability 1:1-15.

MARTÍNEZ, J. J., AND V. DI COLA. 2011. Geographic distribution and phenetic skull variation in two close species of Graomys (Rodentia, Cricetidae, Sigmodontinae). Zoologischer Anzeiger-A Journal of Comparative Zoology 250:175-194.

MARTÍNEZ-GORDILLO, D., O. ROJAS-SOTO, AND A. ESPINOSA-DE LOS MONTEROS. 2010. Ecological niche modelling as an exploratory tool for identifying species limits: an example based on Mexican muroid rodents. Journal of Evolutionary Biology 23:259-270.

MAYARES, D. I. 2012. Variación intraespecífica de Reithrodontomys sumichrasti (Rodentia: Cricetidae) con base en un análisis de morfometría geométrica. Bachelor thesis. Universidad Autónoma del Estado de Morelos. Cuernavaca, México.

MAYDEN, R. L. 1997. A hierarchy of species concepts: the denouement in the saga of the species problem. Pp 381-423, in Species: The Units of Biodiversity (Claridge, M. F. H. A. Dawah, and M. R. Wilson, eds.). Chapman and Hall CRC Press, London, United Kingdom.

MAYR, E. 2000. The biological species concept. Pp 17-29 in Species concepts and phylogenetic theory: a debate (Wheeler, Q. D., and R. Meier, eds.). Columbia University Press, New York, U.S.A.

MCCAIN, C. M. 2005. Elevational gradients in diversity of small mammals. Ecology 86:366-372.

MENESES-TOVAR, C.L. 2011. NDVI as indicator of degradation. Unasylva 62:39-46.

MERRIAM, C. H. 1901. Descriptions of 23 new harvest mice (genus Reithrodontomys). Proceedings of the Washington Academy of Sciences 3:547-558.

MILLER, J. R., AND M. D. ENGSTROM. 2008. The relationships of major lineages within Peromyscine rodents: a molecular phylogenetic hypothesis and systematic reappraisal. Journal of Mammalogy 89:1279-1295.

PATTERSON, B. D., P. L. MESERVE, AND B. K. LANG. 1989. Distribution and abundance of small mammals along an elevational transect in temperate rainforests of Chile. Journal of Mammalogy 70:67-78.

PAVAN, A. C, AND G. MARROIG. 2016. Integrating multiple evidences in taxonomy: species diversity and phylogeny of mustached bats (Mormoopidae: Pteronotus). Molecular Phylogenetics and Evolution 103:184-198.

PETTORELLI, N. 2013. The normalized differential vegetation index. Oxford University Press. Oxford, United Kingdom.

PETTORELLI N., ET AL. 2005. Using the satellite-derived Normalized Difference Vegetation Index (NDVI) to assess ecological effects of environmental change. Trends in Ecology and Evolution 20:503-510.

PETTORELLI N., ET AL. 2007. Early onset of vegetation growth versus rapid green-up: impacts on juvenile mountain ungulates. Ecology 88:381-390.

PETTORELLI, N., ET AL. 2011. The Normalized Difference Vegetation Index (NDVI): unforeseen successes in animal ecology. Climate Research 46:15-27.

QIAO, H., ET AL. 2016. NicheA: Creating virtual species and ecological niches in multivariate environmental scenarios. Ecography 39:805-813.

R DEVELOPMENT CORE TEAM. 2018. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. www.R-project.org/

RAMIREZ-ARRIETA, V. M. 2020. Extended Boxplot Graphics. https://vmra.shinyapps.io/univariados/. Last accessed February 25, 2021.

RISSLER, L. J., AND J. J. APODACA. 2007. Adding more ecology into species delimitation: ecological niche models and phylogeography help define cryptic species in the Black Salamander (Aneides flavipunctatus). Systematic Biology 56:924-942.

RIVERA, P. C., ET AL. 2018. Molecular phylogenetics and environmental niche modeling reveal a cryptic species in the Oligoryzomys flavescens complex (Rodentia, Cricetidae). Journal of Mammalogy 99:363-376.

ROHLF, F. J. 2015. The tps series of software. Hystrix – Italian Journal of Mammalogy 26:9-12.

ROHLF, F. J., AND D. SLICE. 1990. Extensions of the Procrustes method for the optimal superimposition of landmarks. Systematic Zoology 39:40-21.

RUBIDGE, E. M., ET AL. 2011. The role of climate, habitat, and species coâ€occurrence as drivers of change in small mammal distributions over the past century. Global Change Biology 17:696-708.

SANGSTER, G. 2018. Integrative taxonomy of birds: the nature and delimitation of species. Pp. 9-37, in Bird species. Fascinating Life Sciences (Tietze, D. T., ed.). Springer, Cham. New York, U.S.A.

SANTOS, M. J., A. B. SMITH, J. H. THORNE, AND C. MORITZ. 2017. The relative influence of change in habitat and climate on elevation range limits in small mammals in Yosemite National Park, California, U.S.A. Climate Change Responses 4:1-12.

SAUSSURE DE, H. 1860. Note sur quelques mammifères du Mexique. Revue et Magasin de Zoologie Serie 2 12:97-110.

SCHLAGER, S. 2016. Morpho: calculations and visualisations related to geometric morphometrics. R package version 2.3.1.1. Freiburg, Germany, Stefan Schlager, https://CRAN.R-project.org/package=Morpho.

SEIFERT, B. 2014. A pragmatic species concept applicable to all eukaryotic organisms independent from their mode of reproduction or evolutionary history. Soil Organisms 86:85-93.

SITES JR., J. W., AND J. C. MARSHALL. 2003. Delimiting species: a Renaissance issue in systematic biology. Trends in Ecology and Evolution 18:462-470.

SITES JR., J. W., AND J. C. MARSHALL. 2004. Operational criteria for delimiting species. Annual Review of Ecology, Evolution, and Systematics 35:199-227.

SOBERÓN J., AND M. NAKAMURA. 2009. Niches and distributional areas: concepts, methods, and assumptions. Proceedings of the National Academy of Sciences U.S.A 106:19644-19650.

STANCHAK, K. E., AND S. E. SANTANA. 2018. Do ecogeographical rules explain morphological variation in a diverse, Holarctic genus of small mammals? Journal of Biogeography 46:110-122.

STATSOFT, I. N. C. 2007. STATISTICA (data analysis software system). Version 7:1984-2004.

STRUCK, T. H., ET AL. 2018. Finding evolutionary processes hidden in cryptic species. Trends in Ecology and Evolution 33:153-163.

UMETSU, F., AND R. PARDINI. 2007. Small mammals in a mosaic of forest remnants and anthropogenic habitats—evaluating matrix quality in an Atlantic Forest landscape. Landscape Ecology 22:517-530.

VAN AELST, S., AND P. ROUSSEEUW. 2009. Minimum volume ellipsoid. Wiley Interdisciplinary Reviews: Computational Statistics 1:71-82.

VILLALOBOS-CHAVES, D., ET AL. 2016. Clave para la identificación de los roedores de Costa Rica. Escuela de Biología, Universidad de Costa Rica, Ciudad Universitaria Rodrigo Facio, Costa Rica.

ZELDITCH, M. L., D. L. SWIDERSKI, H. D. SHEETS, AND W. L. FINK. 2004. Geometric morphometrics for biologists: A primer. Elsevier Academic Press, New York, U.S.A.

ZHAO, Q., H. ZHANG, AND J. WEI. 2019. Climatic niche comparison across a cryptic species complex. PeerJ 7:p.e7042.

Publicado

2021-11-29

Número

Sección

Articles