Differences in metal content in liver of Heteromyids from deposits with and without previous mining operations

Authors

  • Lia Méndez-Rodríguez Centro de Investigaciones Biológicas del Noroeste. Av. Instituto Politécnico Nacional 195. La Paz 23096, Baja California Sur. México.
  • Sergio Ticul Álvarez-Castañeda

Keywords:

bioaccumulation, bioindicators, chemical pollution, rodents, arid soils.

Abstract

Some rodents of the family Heteromyidae can survive without drinking water, as they obtain it from food. All these species have in common that they eat seeds and fruits. The content of trace metals in food varies depending on the local geology and anthropogenic activities. Baja California Sur has mineral deposits that have been exploited; thus, the metals released may be incorporated into seeds and fruits that are consumed by Heteromyidae. Therefore, metal content in the liver is expected to reflect the presence of mining in soil where these rodents thrive. Individuals from different species of Heteromyidae were collected at sites with mineral deposits; these were divided into two groups: rodents captured in sites with a history of mining operations (Santa Rosalia, San Juan de la Costa, and El Triunfo), and rodents captured in areas with no mining activities (El Vizcaíno, Punta Abreojos, Magdalena Island, and Santiago). The liver of these rodents was excised and its manganese, copper, cadmium, lead, zinc, nickel, and iron contents were determined using atomic absorption spectrophotometry. Manganese was the element that showed the highest significant differences between species, followed by zinc and copper. Iron and cadmium showed the lowest differences. Nickel and lead showed no differences. Chaetodipus arenarius showed significant differences between sites in copper and lead content; C. spinatus did not show significant differences for manganese, copper, nickel, and iron, but it did for cadmium and lead content. Differential accumulation of metals occurs across species. These results indicate that the same species could be used for comparative purposes in pollution monitoring. The comparison of different heteromid species, despite their sharing similar feeding habits and belonging to the same family, can lead to misinterpretation due to the variability of the results. This is probably due to the requirements and tolerances regarding essential elements, such as manganese and zinc, to or tolerance to non-essential elements such as cadmium and lead, which may vary across species.

Author Biography

Lia Méndez-Rodríguez, Centro de Investigaciones Biológicas del Noroeste. Av. Instituto Politécnico Nacional 195. La Paz 23096, Baja California Sur. México.

Programa de Planeación Ambiental y Conservación.Investigador Titular

References

Adriano, D. C. 2001. Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals. Springer. New York, U.S.A.

Allen, H. E. 2002. Bioavailability of metals in terrestrial ecosystems: Importance of partitioning for bioavailability to invertebrates, microbes and plants. Society of Environmental Toxicology and Chemistry.

Alshahri, F., and M. Alqahtani. 2015. Chemical fertilizers as a source of 238 U, 40 K, 226 Ra, 222 Rn, and trace metal pollutant of the environment in Saudi Arabia. Environmental Science and Pollution Research 22:8339-8348.

Aschner, J. L., and M. Aschner. 2005. Nutritional aspects of manganese homeostasis. Molecular aspects of medicine 26:353-362.

Bebianno, M. J., and W. J. Langston. 1991. Metallothionein induction in Mytilus edulis exposed to cadmium. Marine Biology 108:91-96.

Bozinovic, F., and P. Gallardo. 2006. The water economy of South American desert rodents: from integrative to molecular physiological ecology. Comparative Biochemistry and Physiology Part C: Toxicology and Pharmacology 142:163-172.

Brock, A. A., S. A., Chapman, E. A. Ulman, and G. Wu. 1994. Dietary manganese deficiency decreases rat hepatic arginase activity. The Journal of nutrition 124:340-344.

Brown, J. H., and G. A. Liberman. 1973. Resource utilization and coexistence of seed-eating rodents in sand dune habits. Ecology 54:788-797.

Brown, J. H., O. J. Reichman, and D. W. Davison. 1979. Granivory in desert ecosystems. Annual Review of Ecology and Systematics 10:788-797.

Consejo de Recursos Minerales. 1999. Monografía geológico-minera del estado de Baja California Sur. Secretaría de Comercio y Fomento Industrial. Coordinación General de Minería. Pachuca, México.

Florianczyk, B. 2007. Metallothioneins and its role in metal regulation, binding of reactive oxygen species, apoptosis and cell differentiation. Journal of Pre-clinical and Clinical Research 1:16-18

Frank, C. L. 1988. The relationship of water content, seed selection, and the water requirements of a heteromyid rodent. Physiological Zoology 61:527-534.

Fritsch, C., R. P. Cosson, M. CÅ“urdassier, F. Raoul, P. Giraudoux, N. Crini, and R. Scheifler. 2010. Responses of wild small mammals to a pollution gradient: host factors influence metal and metallothionein levels. Environmental Pollution 158:827-840.

Gutiérrez-Ramos, A., and S. T. Álvarez-Castañeda. 1999. Seed removal by heteromyid rodents in three habitats of tropical Mexico. Pp 211-222 in Ecology and management of forest, woodlands, and scrublands in the dryland region of the United States and Mexico: Perspectives for the 21st Century (Ffolliott, P. F., and A Ortega-Rubio, eds.). University of Arizona, Centro de Investigaciones Biológicas del Noroeste. La Paz, México.

Hoffmeister, D. F. 1951. A taxonomic and evolutionary study of the piñon mouse, Peromyscus truei. Illinois Biological Monographs 21:1–104.

Hunter, B. A., M. S. Johnson, and D. J. Thompson. 1987. Ecotoxicology of copper and cadmium in a contaminated grassland ecosystem. III. Small Mammals. Journal of Applied Ecology 24:601-614.

Iwai, T., M. Takahashi, K. Oda, Y. Terada, and K. T. Yoshida. 2012. Dynamic changes in the distribution of minerals in relation to phytic acid accumulation during rice seed development. Plant Physiology 160:2007-2014.

Janzen, D. H. 1970. Herbivores and the number of three species in tropical forest. American Naturalist 104:501-528.

Jonker, M. J., C. Svendsen, J. J. Bedaux, M. Bongers, and J. E. Kammenga. 2005. Significance testing of synergistic/antagonistic, dose levelâ€dependent, or dose ratioâ€dependent effects in mixture doseâ€response analysis. Environmental Toxicology and Chemistry: An International Journal 24:2701-2713.

Kim, R. Y., J. K. Yoon, T. S. Kim, J. E. Yang, G. Owens, and K. R. Kim. 2015. Bioavailability of heavy metals in soils: definitions and practical implementation—a critical review. Environmental Geochemistry and Health 37:1041-1061.

Krężel, A., and W. Maret. 2017. The functions of metamorphic metallothioneins in zinc and copper metabolism. International Journal of Molecular Sciences 18:1237.

Lewis L. A., R. J. Poppenga, W. R. Davidson, J. R. Fischer, and K. A. Morgan. 2001. Lead toxicosis and trace element levels in wild birds and mammals at a firearms training facility. Archives of Environmental Contamination and Toxicology 41:208-214.

Linzey A. V., R. Timm, S. T. Álvarez-Castañeda, I. Castro-Arellano, and T. Lacher. 2008. Chaetodipus spinatus. In, IUCN 2013. IUCN. Red List of Threatened Species. Version 2015.1. http://www.iucnredlist.org/details/4338/0.

Lonnerdal, B. 2000. Dietary factors influencing zinc absorption. The Journal of Nutrition 130:1378S-1383S.

Ma, W. 1996. Lead in mammals. Pp. 281–296 in Environmental contaminants in wildlife: interpreting tissue concentrations (Beyer, W. N., G. H. Heinz, and A. W. Redmond-Norwood, eds). Second edition. Lewis. Boca Raton, U.S.A.

MacMillen, R. E., and A. K. Lee. 1967. Australian desert mice: independence of exogenous water. Science 158:383-385.

Macmillern, E., and D. S. Hinds. 1983. Water regulatory efficiency in heteromyid rodents: a model and its application. Ecology 64:152-164.

Mares, M. A. 1993. Heteromyids and their ecological counterparts: A pandesertic view of rodent ecology and evolution. Pp. 652-701 in Biology of the Heteromyidae (Genoways, H. H., and J. H Brown, eds.). The American Society of Mammalogists, Special Publication. Lawrence, U.S.A.

Marques, C. C., A. Sánchez-Chardi, S. I. Gabriel, J. Nadal, A. M. Viegas-Crespo, and M. Da Luz Mathias. 2007. How does the greater white-toothed shrew, Crocidura russula, responds to long-term heavy metal contamination?— A case study. Science of the Total Environment 376:128-133.

Milton, A., J. A., Cooke, and M. S. Johnson. 2003. Accumulation of lead, zinc, and cadmium in a wild population of Clethrionomys glareolus from an abandoned lead mine. Archives of Environmental Contamination and Toxicology 44:405-411.

Mikolić, A., Schönwald, N., and M. Piasek. 2016. Cadmium, iron and zinc interaction and hematological parameters in rat dams and their offspring. Journal of Trace Elements in Medicine and Biology 38:108-116.

Méndez-Rodríguez, L. C., and S. T. Álvarez-Castañeda. 2016. Assessment of trace metals in soil, vegetation and rodents in relation to metal mining activities in an arid environment. Bulletin of Environmental Contamination and Toxicology 97:44-49.

Milton, A., Cooke, J. A., and M. S, Johnson. 2003. Accumulation of lead, zinc, and cadmium in a wild population of Clethrionomys glareolus from an abandoned lead mine. Archives of Environmental Contamination and Toxicology 44:405-411.

Patton, J. L., and S. T. Álvarez Castañeda. 1999. Family Heteromyidae. Pp. 351-443 in Mamíferos del Noroeste Mexicano (Álvarez Castañeda, S. T., y J. L. Patton, eds.). Centro de Investigaciones Biológicas del Noroeste, S. C. La Paz, México.

Nys, C., T. Van Regenmortel, C. R. Janssen, R. Blust, E. Smolders, and K. A. Schamphelaere. 2017. Comparison of chronic mixture toxicity of nickelâ€zincâ€copper and nickelâ€zincâ€copperâ€cadmium mixtures between Ceriodaphnia dubia and Pseudokirchneriella subcapitata. Environmental Toxicology and Chemistry 36:1056-1066.

Petkovšek, S. A. S., Kopušar, N., and B. Kryštufek. 2014. Small mammals as biomonitors of metal pollution: a case study in Slovenia. Environmental Monitoring and Assessment 186:4261-4274.

Pais, I., and J. B. Jones, Jr. 1997. The handbook of trace elements. CRC Press. Boca Raton, U.S.A.

Price, M. V. 1978. Seed dispersion preferences of coexisting desert rodents species. Journal of Mammalogy 74:436-442.

Price, M. V. 1983. Laboratory studies of seed size and seed species selection by heteromyid rodents. Oecologia 60:259-263.

Ramirez, M., S. Massolo, R. Frache, and J. A. Correa. 2005. Metal speciation and environmental impact on sandy beaches due to El Salvador copper mine, Chile. Marine Pollution Bulletin, 50: 62-72.

Reichman, O. J., and M. V. Price. 1993. Ecological aspects of heteromyid foraging. Pp 539-574 in Biology of the Heteromyidae (Genoways, H. H., and J. H. Brown, eds.). The American Society of Mammalogists, Special Publication. Lawrence, U.S.A.

Servicio Geológico Mexicano. 2017. Panorama minero del Estado de Baja California Sur. México. Secretaria de Economía, Servicio Geológico Mexicano, Coordinación General de Minería and Secretaría de Gobernación. Ciudad de México, México.

Schmidt-Nielsen, K. 1964. Desert animals. Physiological problems of heat and water. Desert animals. Physiological problems of heat and water. Oxford University Press. London, U.K.

Schmidt-Nielsen, K. 1972. How animals work. Cambridge University Press, London, U.K.

Schoendorfer, N., and P. S. Davies. 2012. Micronutrient interrelationships: Synergism and antagonism, Pp 159-177 in Micronutrients (Betancourt, A. I., and H. F. Gaitan, eds). First edition. Nova Science Publishers, Inc. New York, U.S.A.

Shumilin, E. N., Rodríguez-Figueroa, G., Bermea, O. M., Baturina, E. L., Hernández, E., and G. D. R. Meza. 2000. Anomalous trace element composition of coastal sediments near the copper mining district of Santa Rosalía, Peninsula of Baja California, Mexico. Bulletin of Environmental Contamination and Toxicology 65:261-268.

Soto-Jiménez, M. F., and A. R. Flegal. 2009. Origin of lead in the Gulf of California Ecoregion using stable isotope analysis. Journal of Geochemical Exploration, 101:209-217.

Talmage S. S., and B. T. Walton. 1991. Small mammals as monitors of environmental contaminants. Pp. 47-145 in Reviews of Environmental Contamination and Toxicology. Springer. New York, U. S. A.

Taylor, S. R. 1964. Abundance of chemical elements in the continental crust: a new table. Geochimica et Cosmochimica Acta 28:1273-1285.

Torres K. C., and M. L. Johnson. 2001. Bioaccumulation of metals in plants, arthropods, and mice at a seasonal wetland. Environmental Toxicology and Chemistry 20:2617-2626.

Van Loon, J. C. 1985. Selected methods of trace metal analysis: biological and environmental samples. John Wiley and Sons. U.S.A.

VaÅ¡ák, M., and G. Meloni. 2011. Chemistry and biology of mammalian metallothioneins. JBIC Journal of Biological Inorganic Chemistry 16:1067-1078.

Zar, J. H. 2010. Biotatistical analysis. 5th editon. Prentice Hall. Upper Saddle River, U.S.A.

Downloads

Published

2019-09-25

Issue

Section

Special Contribution