Microhabitat characterization in the home range of the Mule deer (Odocoileus hemionus) in arid zones

Authors

  • Luis Manuel García-Feria INECOL
  • Luz Adriana Pérez-Solano Facultad de Ciencias Biológicas. Universidad Autónoma de Nuevo León
  • Sonia Gallina-Tessaro
  • Alexander Peña-Peniche

Keywords:

ámbito hogareño, área núcleo, composición vegetal, estructura de hábitat, uso de hábitat

Abstract

Knowing the home range of a species helps to identify the resources it needs to survive and reproduce and how this behavior is expressed spatially.  Within home ranges, core areas are the sites where the main resources are abundant.  The microhabitat is a spatial area composed of variables that can affect individual behavior.  In this sense, the characterization of this inner part of the home range can contribute significantly to understanding the elements that these areas offer compared to the rest of the habitat of a population.  This work characterized the home range and areas outside it, as well as the core areas of female mule deer on a microhabitat scale in the Chihuahuan Desert, México.  The structure and composition of the vegetation were characterized according to three habitat use hierarchies: interior of the core areas and zones within and outside the home ranges of seven female mule deer.  A Principal Component Analysis (PCA) was performed, and a hierarchical clustering was used to relate the variables.  The variation in structure and composition in each hierarchy was evaluated by performing multivariate permutation tests.  Twenty-five plant species were recorded in the transects.  The PCA showed the most similar use hierarchies are the core and home range inner areas.  The core area presents higher density and cover-dominance values, and the zone outside the home range showed high values of distance to the individual closest to the central point and greater variation in this parameter.  The MANOVA indicated a significant variation in vegetation structure and composition in relation to use hierarchies.  Significant differences in vegetation structure and composition were found at the microhabitat level between the core area of activity and the zones within and outside the home range.  The core area has a greater structural complexity of vegetation, with greater plant coverage-abundance and density; this suggests that the core area is located in a more competitive and saturated environment.  Outside the home range, the microhabitat has greater spatial heterogeneity of vegetation, with greater distance and variation of plant cover.  Future research could address the spatial (micro-macro) and temporal scales to better understand the ecological dynamics of the species in different habitat use hierarchies.

Author Biography

Luz Adriana Pérez-Solano, Facultad de Ciencias Biológicas. Universidad Autónoma de Nuevo León

Conservación, ungulados, comportamiento, estimaciones poblacionales, mamíferos medianos y grandes.

References

ALCALÁ-GALVÁN, C., Y P. KRAUSMAN. 2013. Diets of desert mule deer in altered habitats in the lower Sonoran. Desert. Calif Fish Game 98:81–103.

ANDERSON, A. E. Y O. C. WALLMO. 1984. Odocoileus hemionus. Mammalian Species 219:1–9.

ASENSIO, N. ET AL. 2012. Spider monkeys use highâ€quality core areas in a tropical dry forest. Journal of Zoology 287:250–258.

BEZUIDENHOUT, C. N., R. VAN ANTWERPEN, Y S. D. BERRY. 2012. An application of principal component analyses and correlation graphs to assess multivariate soil health properties. Soil science 177:498-505.

BÖRGER, L. ET AL. 2006. An integrated approach to identify spatiotemporal and individual-level determinants of animal home range size. The American Naturalist 168:471–485.

BÖRGER, L., B. D. DALZIEL, Y J. M. FRYXELL. 2008. Are there general mechanisms of animal home range behaviour? A review and prospects for future research. Ecology letters 11:637–650.

BURT, W. H. 1943. Territoriality and home range concepts as applied to mammals. Journal of Mammalogy 24:3463–52.

CAMPIONI, L. ET AL. 2013. Individual and spatio-temporal variations in the home range behaviour of a long-lived, territorial species. Oecologia 172:371–385.

CLARKE, K. R. 1993. Nonâ€parametric multivariate analyses of changes in community structure. Australian journal of ecology 18:117–143.

CONANP (COMISIÓN NACIONAL DE ÁREAS NATURALES PROTEGIDAS). 2006. Programa de conservación y manejo Reserva de la Biosfera de Mapimí, México. Comisión Nacional de Áreas Naturales Protegidas. México, D.F.

COSSÍO-BAYÚGAR, A. 2015. Interacciones ecológicas del venado bura (Odocoileus hemionus) y el bovino doméstico (Bos taurus) en la Reserva de la Biosfera de Mapimí, Durango, México. Tesis de Doctorado. Instituto de Ecología, A.C., Xalapa, Veracruz, México.

ESPARZA-CARLOS, J. P., J. W. LAUNDRÉ, Y V. J. SOSA. 2011. Precipitation impacts on mule deer habitat use in the Chihuahuan desert of Mexico. Journal of Arid Environments 75:1008–1015.

ESPARZA-CARLOS, J. P., ET AL. 2016. Apprehension affecting foraging patterns and landscape use of mule deer in arid environments. Mammalian Biology-Zeitschrift für Säugetierkunde 81:543-550.

FOX, K. B., Y P. R. KRAUSMAN. 1994. Fawning habitat of desert mule deer. The Southwestern Naturalist 39:269–275.

GALLINA-TESSARO, ET AL. 2019. Mule deer of arid zones. Pp. 347–370 in: Ecology and conservation of tropical ungulates in Latin America (Gallina-Tessaro, S., ed.). Springer Nature Switzerland AG.

GEIST, V. 1981. Behavior: adaptive strategies in mule deer. Pp. 157-223 in Mule and black-tailed deer of North America (Wallmo, O. C., ed.). University of Nebraska press, Nebraska.

GEIST, V. 1998. Deer of the world: their evolution, behaviour, and ecology. Stackpole Books, Mechanicsburg.

GRIFFITH, B. Y B. A. YOUTIE. 1988. Two devices for estimating foliage density and deer hiding

covers. Wildlife Society Bulletin 16:206–210.

GOWER, J. C. 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53:325–338.

HÄRDLE, W. Y Z. HLÁVKA, Z. 2007. Multivariate statistics: exercises and solutions. Springer Science+Business

HERNÁNDEZ, L., J. W. LAUNDRÉ, Y M. GURUNG. 2005. Use of camera traps to measure predation risk in a puma-mule deer system. Wildlife Society Bulletin 33:353–358.

KIE, J. G., ET. AL. 2002. Landscape heterogeneity at differing scales: effects on spatial distribution of mule deer. Ecology 83:530–544.

LOZANO-CAVAZOS, E. A. 2003. Factores que afectan el uso de hábitat del venado bura (Odocoelius hemionus crooki Mearns) en el Noroeste de Coahuila. Tesis. Universidad Autónoma Agraria Antonio Narro, Saltillo, Coahuila, México.

MACKIE, R. J., ET AL. 2003. Mule deer. Odocoileus hemionus. Pp 889–905 in Wild mammals of North America. Biology, management, and conservation (Feldhamer, G. A., B. C. Thompson, y J. A. Chapman, eds.). Johns Hopkins University Press, Baltimore, U. S. A.

MÉRIGOT, B., J. P. DURBEC, Y J. C. GAERTNER. 2010. On goodnessâ€ofâ€fit measure for dendrogramâ€based analyses. Ecology 91:1850–1859.

MIESCH, A. T. 1976. Q-mode factor analysis of compositional data. Computers & Geosciences 1:147-159.

MONTAÑA, C. 1988. Las formaciones vegetales. Pp. 167–197 in Estudio integrado de los recursos vegetación, suelo y agua en la reserva de la biosfera de Mapimí (Montaña, C., ed.). Instituto de Ecología, México.

MONTAÑA, C. 1992. The colonization of bare areas in two-phase mosaics of an arid ecosystem. Journal of Ecology 80:315–327.

MONTAÑA, C., Y R. F. BREIMER. 1988. Major vegetation and environment units. pp. 99–114 in Estudio integrado de los recursos vegetación, suelo y agua en la reserva de la biosfera de Mapimí (Montaña, C., ed.). Instituto de Ecología, México.

MUELLER-DOMBOIS, D., Y H. ELLENBERG. 1974. Aims and methods of vegetation ecology. John Wiley and Sons, Inc. New York.

PÉREZ-SOLANO, L. A., S. GALLINA-TESSARO, Y G. SÁNCHEZ-ROJAS. 2016. Individual variation in mule deer (Odocoileus hemionus) habitat and home range in the Chihuahuan Desert, Mexico. Journal of Mammalogy 97:1228–1237.

PÉREZ-SOLANO, L. A., L. M. GARCÍA-FERIA, Y S. GALLINA-TESSARO. 2017. Factors affecting the selection of and displacement within core areas by female mule deer (Odocoileus hemionus) in the Chihuahuan Desert, Mexico. Mammalian Biology 87:152–159.

PÉREZ-SOLANO, L. A., Y S. GALLINA-TESSARO. 2019. Activity patterns and their relationship to the habitat use of mule deer (Odocoileus hemionus) in the Chihuahuan Desert, Mexico. Therya 10:323–328.

POWELL, R. A., Y M. S. MITCHELL. 2012. What is a home range? Journal of Mammalogy 93:948–958.

R Core Team. 2023. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.Rproject.org/

RECHETELO, J. ET AL. 2016. Movement patterns, home range size and habitat selection of an endangered resource tracking species, the Black-Throated Finch (Poephila cincta cincta). 2016. PLoS ONE 11:e0167254.

SAMUEL, M. D., D. PIERCE, Y E. O. GARTON. 1985. Identifying areas of concentrated use

within the home range. The Journal of Animal Ecology 54:11–19.

SÁNCHEZ-ROJAS, G., Y S. GALLINA. 2000a. Factors affecting habitat use by mule deer (Odocoileus hemionus) in the central part of the Chihuahuan Desert, Mexico: an assessment with univariate and multivariate methods. Ethology Ecology and Evolution 12:405–417.

SÁNCHEZ-ROJAS, G., Y S. GALLINA. 2000b. Mule deer (Odocoileus hemionus) density in a landscape element of the Chihuahuan Desert, Mexico. Journal of Arid Environments 44:357–368.

SPENCER, W. D. 2012. Home ranges and the value of spatial information. Journal of Mammalogy 93:929–947.

TULL, J. C., P. R. KRAUSMAN Y R. J. STEIDL. 2001. Bed-site selection by desert mule deer in southern Arizona. The Southwestern Naturalist 3:354-357.

WEBER, M. Y C. GALINDO-LEAL. 2005. Venado bura. Pp. 515-517 in Los mamíferos silvestres de México (Ceballos, G. y G. Olivia, eds.). FCE, CONABIO. México.

Wiegleb, G. 1980. Some applications of principal components analysis in vegetation: ecological research of aquatic communities. Vegetatio 42:67–73.

Downloads

Published

2024-01-31

Issue

Section

Special Contribution