Persistence of mule deer pellet groups on Chihuhuan Desert

Authors

Keywords:

Fecal group counting, Odocoileus hemionus, Mapimi Biosphere Reserve, Relative abundance

Abstract

The persistence of fecal or pellet groups is indispensable when using the pellet group counting technique to estimate population densities and relative abundances of deer, as well as other herbivores.  This technique is widely employed worldwide, and in México, the majority of deer abundance estimates have been made using this tool.  However, for mule deer (Odocoileus hemonious) in México, there is no data on the persistence of pellet groups, and there is only one study on white-tailed deer.  The pellet group counting technique has two main methods: a) "Fecal Standing Crop," where the accumulated pellet groups in plots are counted in a single visit, and b) "Fecal Accumulation Rate," which estimates density based on the accumulation of new fecal groups between two sampling periods, initially requiring the removal of all fecal groups from plots and counting again after some time.  Both methods require knowing the pellet group disappearance rate during the pellet group accumulation period.  This information is fundamental to understanding the ecology and making precise decisions in the management and conservation of mammals, such as mule deer, a species that is declining in some regions of México.  Due to the lack of studies on the persistence of pellet group of mule deer in México, the aim of this study was to determine the persistence of mule deer fecal groups and their color changes over time, to establish pellet accumulation periods for estimating population abundances without biases when using this technique in arid habitats.  We monitored 102 fecal groups for four years in the Chihuahuan Desert, finding that pellet groups are only lost during the summer rainy season.  All pellet groups deposited between October and May were present, and all pellet groups turned white only after the first summer rainy season.  The persistence of pellet groups was similar across seasons (fall, winter, spring) and deposition years (2004 to 2006).  Some pellet groups persisted for over four years.  The data suggest that the only source of degradation of pellet groups is summer rains, and no degradation by biological agents, such as fungi or insects, was observed.  In summary, in arid areas, to estimate deer use or density throughout the entire dry season through pellet group counting, it is suggested that only two visits with either of the mentioned techniques are needed.  If "Fecal Standing Crop" is used, there is now certainty that all non-white pellets are post the summer rainy season.  If the "Fecal Accumulation Rate" technique is used, there is certainty that there will be no loss of pellets groups between the accumulation period of the entire dry season, approximately 7.5 months later.  By reducing the number of visits, it allows us to cover more sampling sites, expand the study area, and obtain more precise estimates that will help understand ecological aspects and make management decisions.

Author Biography

Juan Pablo Esparza-Carlos, Universidad de Guadalajara

Departamento de Ecología y Recursos Naturales. Centro Universitario de la Costa Sur.

References

ARIAS-DEL RAZO, I., L. HERNÁNDEZ, J. W. LAUNDRÉ, ET AL. 2012. The landscape of fear: habitat use by a predator ( Canis latrans ) and its main prey ( Lepus californicus and Sylvilagus audubonii ). Canadian Journal of Zoology. 90: 683–693.

BARNES, R. F. W., y K. L. BARNES. 1992. Estimating decay rates of elephant dung piles in forest. African Journal of Ecolology 30: 316–321.

DELISLE, Z. J., R. K. SWIHART, B. M. QUINBY, ET AL. 2022. Density from pellet groups: comparing methods for estimating dung persistence time. Wildlife Society Bulletin46: e1325.

DORMONT, L., S. RAPIOR, D. B. MCKEY, y J.-P. LUMARET. 2007. Influence of dung volatiles on the process of resource selection by coprophagous beetles. Chemoecology 17: 23–30.

ESPARZA-CARLOS, J. P., J. W. LAUNDRÉ, L. HERNÁNDEZ, ET AL. 2016. Apprehension affecting foraging patterns and landscape use of mule deer in arid environments. Mammalian Biology 81: 543–550.

ESPARZA-CARLOS, J. P., J. W. LAUNDRÉ, y V. J. SOSA. 2011. Precipitation impacts on mule deer habitat use in the Chihuahuan desert of Mexico. Journal Arid Environment 75: 1008–1015.

ESPARZA-CARLOS, J. P. 2011. Influencia del riesgo de depredación por pumas en el uso de hábitat del venado bura en Mapimí. Tesis Doctoral. Instituto de Ecología A. C., Xalapa, Veracruz.

EZCURRA, E., y S. GALLINA. 1981. Biology and population dynamics of white-tailed deer in northwestern Mexico. In Deer biology, habitat requirements, and management in western North America. pp. 78–108, Instituto de Ecología A. C., Mexico D. F.

FLINDERS, J. T., y J. A. CRAWFORD. 1977. Composition and degradation of jackrabbit and cottontail fecal pellets, Texas High Plains. Journal Range Management 30: 217–220.

GALINDO-LEAL, C., and M. WEBER. 1998. El Venado de la Sierra Madre Occidental. Ecología, Manejo y Conservación. CONABIO-EDICUSA, Mexico D F.

GALLINA-TESSARO, S. 1990. Tres ejemplos de aplicación de métodos indirectos para la estimación de parámetros poblacionales de cérvidos. Doñana Acta Vertebrata 17.

GALLINA, S., P. GALINA-TESSARO, y S. ALVAREZ-C´RDENAS. 1991. Mule deer density and pattern distribution in the pine-oak forest at the Sierra de La Laguna in Baja California Sur, Mexico. Ethology Ecology & Evolution3: 27–33.

GUTH, M.C.G.A. 1987. Hábitos alimenticios del venado bura (Odocoileus hemionus, Rafinesque 1817) en la Reserva de la Biosfera de Mapimí Dgo. Tesis de licenciatura. Universidad Nacional Autónoma de México, Ciudad de México.

HARESTAD, A. S., y F. L. BUNNELL. 1987. Persistence of black-tailed deer fecal pellets in coastal habitats. Journal Wildlife Management 33–37.

HERNANDEZ, L., H. BARRAL, G. HALFFTER, ET AL. 1999. A note on the behavior of feral cattle in the Chihuahuan Desert of Mexico. Applied Animal Behaviour Science 259–267.

LAING, S. E., S. T. BUCKLAND, R. W. BURN, ET AL. 2003. Dung and nest surveys: estimating decay rates. Journal Applied Ecology 40: 1102–1111.

LEOPOLD, B. D., P. R. KRAUSMAN, y J. J. HERVERT. 1984. Comment:The pellet-group census gechnique as an indicator of relative habitat use. Wildlife Society Bulletin12: 325–326.

LIOY, S., S. BRAGHIROLI, A. DEMATTEIS, ET AL. 2015. Faecal pellet count method: some evaluations of dropping detectability for Capreolus capreolus Linnaeus, 1758 (Mammalia: Cervidae), Cervus elaphus Linnaeus, 1758 (Mammalia: Cervidae) and Lepus europaeus Pallas, 1778 (Mammalia: Leporidae). Italian Journal of Zoology. 82: 231–237.

LOFT, E. R., y J. G. KIE. 1988. Comparison of pellet-group and radio triangulation methods for assessing deer habitat use. Journal Wildlife Management 524–527.

MANDUJANO, S. 2014. Métodos de estimación de la densidad de venados. In S. Gallina-Tessaro, S. Mandujano-Rodríguez, y O. A. V. Espino-Barros (Eds.) Monitoreo y manejo del venado cola blanca: conceptos y Métodos. pp. 19–44, Instituto de Ecología A. C., Benemérita Universidad Autónoma de Puebla, Xalapa, Veracruz, México.

MCMAHON, M. C., M. A. DITMER, y J. D. FORESTER. 2021. Comparing unmanned aerial systems with conventional methodology for surveying a wild white-tailed deer population. Wildlife Research 49: 54–65.

MONTAÑA, C., R. F. BREIMER. 1988. Major vegetation and environment units. En: Montaña, C. (Ed.), Estudio Integrado de los Recursos Vegetación, Suelo y Agua en la Reserva de la Biosfera de Mapimí. Instituto De Ecología A. C., Ciudad de México City, pp. 99 -114.

MYERS, J. A., M. VELLEND, S. GARDESCU, ET AL. 2004. Seed dispersal by white-tailed deer: implications for long-distance dispersal, invasion, and migration of plants in eastern North America. Oecologia 139: 35–44.

NEFF, D. J. 1968. The pellet-group count technique for big game trend, census, and distribution: a review. Journal Wildlife Management 597–614.

PRUSZENSKI, J. M., y D. L. HERNÁNDEZ. 2020. White-tailed Deer Fecal Matter Distribution and Nutrient Contribution in Tallgrass Prairie. Amercian Midland Naturalist 184: 268–273.

R CORE TEAM. 2021. R: A Language and environment for statistical computing. Available at: https://www.r-project.org/.

SÁNCHEZ-ROJAS, G., y S. GALLINA. 2000a. Factors affecting habitat use by mule deer (Odocoileus hemionus) in the central part of the Chihuahuan Desert, Mexico: an assessment with univariate and multivariate methods. Ethology Ecology & Evolution12: 405–417.

SÁNCHEZ-ROJAS, G., y S. GALLINA. 2000b. Mule deer (Odocoileus hemionus) density in a landscape element of the Chihuahuan Desert, Mexico. Journal of Arid Environment 44: 357–368.

TORRES, R. T., J. SANTOS, y C. FONSECA. 2013. Persistence of roe (Capreolus capreolus) and red (Cervus elaphus) deer pellet-groups in a Mediterranean mosaic landscape. Wildlife Biology in Practice 9: 7–18.

WALLMO, O. C., A. W. JACKSON, T. L. HAILEY, ET AL. 1962. Influence of rain on the count of deer pellet groups. Journal Wildlife Management 26: 50–55.

Downloads

Published

2024-01-31

Issue

Section

Special Contribution