Applicability of DNA barcoding-based analyses on the diet of the gray brocket deer (Subulo gouazoubira) in xeric hillside forests

Authors

  • Mariana Cosse Depto. de Biodiversidad y Genética- IIBCE http://orcid.org/0000-0001-9644-1633
  • Antonella Bruno
  • Natalia Mannise
  • Nadia Bou
  • Maria Zabaleta
  • Mauricio Bonifacino
  • Arley Camargo
  • Pablo Smircich
  • Andrés Iriarte
  • Alejandro Brazeiro

Keywords:

Diet, DNA metabarcoding, mammal, neotropical cervids, noninvasive, species identification.

Abstract

In this study, we explore the applicability of DNA barcoding, specifically targeting the chloroplast DNA (cpDNA) sequences, particularly the trnL (UAA) intron region, to analyze the diet of gray brocket deer.  This approach offers improved taxonomic resolution and the ability to identify species with greater precision compared to traditional methods.  The study was conducted in the "Reserva Natural Salus" in Uruguay, covering a range of vegetation types, where gray brocket deer coexist with other exotic ungulates.  A local reference database of trnL (UAA) sequences was established, incorporating both GenBank data and sequences obtained from native species in the study area.  Fecal samples were collected in summer and winter, and DNA was extracted and amplified for metabarcoding analysis in pooled samples for each season. For each sample 28,229 and 33,588 reads were obtained respectively, which together corresponded to 25 Operational Taxonomic Units (OTUs).  The species Rubus ulmifolius and Schinus engleri were the most represented in the diet with 69.6 % of the summer reads, whereas in winter, 68.7 % of the reads corresponded only to Schinus engleri.  These findings indicate that gray brocket deer consume species that have higher nutritional value, which may be linked to their capacity to thrive in young and productive ecosystems.  This study demonstrates the feasibility of DNA barcoding for dietary analysis in gray brocket deer and provides valuable insights into their food habits in the "Reserva Natural Salus".  Further improvements to increase the reference databases of native species and the exploration of additional genetic markers are recommended for enhanced species-level discrimination in dietary analysis studies.  This methodology is promising for future research as diet studies have an impact on species management, habitat conservation and biodiversity conservation efforts.

Author Biography

Mariana Cosse, Depto. de Biodiversidad y Genética- IIBCE

My research focuses on biodiversity conservation. Through the study of microevolution processes, I am interested in the basic information generation as an input for the development of management plans and territorial ordering. My work focuses on the study of Neotropical mammals, key species and indicators of health of ecosystems. I have specialized in the analysis of genetic markers and molecular ecology since they constitute a powerful tool to answer both basic and applied questions of evolutionary biology, behavioral ecology and conservation biology. I have also developed methods of analysis from non-invasive sampling, especially useful for working with elusive species or with conservation problems. I am concerned in understanding the effect of eco-ethological factors on genetic structure as well as the impact of anthropic processes on populations’ dynamics. I am interested too in the development and application of state-of-the-art methods such as mass sequencing for the sequencing data, several orders of magnitude higher than the classical methods, applied to species inventory and diet studies. At the same time, I have developed activities related to biological conservation by participating in different interdisciplinary working groups.

References

Ahmad, M., et al. 2015. Antioxidant and nutraceutical value of wild medicinal Rubus berries. Pakistan Journal of Pharmaceutical Sciences 28(1): 241-247.

Alberdi, A., et al. 2019. Promises and pitfalls of using high-throughput sequencing for diet analysis. Molecular Ecology Resources 19(2): 327-348.

Altschul, S. F., et al. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic acids research 25(17): 3389-3402.

Aristimuño, M. P. 2013. Variabilidad genética en poblaciones de Mazama gouazoubira (Mammalia: Cervidae Fischer, 1814) de Uruguay y la región. Grade, Facultad de Ciencias, Udelar.

Benson, D. A., et al. (2013, Jan). GenBank. Nucleic Acids Res 2012/11/30. Retrieved 08/28/2022, 41, from https://www.ncbi.nlm.nih.gov/genbank/.

Bernegossi, A. M., et al. 2022. Resurrection of the genus Subulo Smith, 1827 for the gray brocket deer, with designation of a neotype. Journal of Mammalogy.

Black-Décima, P., et al. 2010. Brown brocket deer Mazama gouazoubira (Fischer 1814). Neotropical Cervidology: Biology and Medicine of Latin American Deer. J. M. B. Duarte and S. Gonzalez. Jaboticabal, Funep/IUCN: 190-201.

Bodmer, R. E. 1989. Frugivory in Amazonian Artiodactyla: evidence for the evolution of the ruminant stomach. Journal of Zoology 219(3): 457-467.

Bodmer, R. E. 1990. Ungulate frugivores and the browser-grazer continuum. Oikos: 319-325.

Bodmer, R. E. 1991. Strategies of seed dispersal and seed predation in Amazonian ungulates. Biotropica: 255-261.

Bonifacino, M. and A. Rossado. 2016. Flora & Vegetación de la Reserva Natural Salus. R. N. Salus. Montevideo, Uruguay.

Bridson, D. and L. Forman. 1992. The herbarium handbook, rev. ed.

Caballero, M. 2001. Comparación de la dieta de la urina (Mazama gouazoupira) durante las épocas lluviosa y seca en la zona del Izozog, Santa Cruz, Bolivia. Bachelor's thesis, Universidad Autónoma Gabriel René Moreno, Santa Cruz, Bolivia.

Cartes, J. L. 1998. Distribución y uso de hábitat de la corzuela parda en Los Llanos de La Rioja, Argentina. Master's thesis, Universidad Nacional de Córdoba, Córdoba, Argentina.

Cosse, M., et al. 2009. Feeding ecology of Ozotoceros bezoarticus: conservation implications in Uruguay. Iheringia. Série Zoologia 99: 158-164.

Davison, A., et al. 2002. On the origin of faeces: morphological versus molecular methods for surveying rare carnivores from their scats. Journal of Zoology 257(2): 141-143.

Deagle, B. E., et al. 2019. Counting with DNA in metabarcoding studies: How should we convert sequence reads to dietary data? Molecular Ecology 28(2): 391-406.

Deagle, B. E., et al. 2013. Quantifying sequence proportions in a DNAâ€based diet study using Ion Torrent amplicon sequencing: which counts count? Molecular Ecology Resources 13(4): 620-633.

Fazekas, A. J., et al. 2012. DNA barcoding methods for land plants. Methods and protocols. 858: 223-252.

Garnick, S., et al. 2018. Assessment of Animal-Based Methods Used for Estimating and Monitoring Rangeland Herbivore Diet Composition. Rangeland Ecology & Management 71(4): 449-457.

Gayot, M., et al. 2004. Comparative diet of the two forest cervids of the genus Mazama in French Guiana. Journal of Tropical Ecology 20(01): 31-43.

Geist, V. 1998. Deer of the world : their evolution, behaviour, and ecology. Mechanicsburg, Pa., Stackpole Books.

Hofmann, R. R. 1989. Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia 78(4): 443-457.

Hofmann, R. R. and D. R. M. Stewart. 1972. Grazer or browser: a classification based on the stomach-structure and feeding habits of East African ruminants. Mammalia 36(2): 226-240.

Juliá, J. P. and E. Richard. 2001. Management of brown brocket deer (Mazama gouazoubira) under conditions of strict control in Reserva Experimental Horco Molle (Tucumán, Argentina). Deer Specialist Group News 16: 8-9.

Kufner, M. B., et al. 2008. Is the native deer Mazama gouazoubira threatened by competition for food with the exotic hare Lepus europaeus in the degraded Chaco in Córdoba, Argentina? Journal of Arid Environments 72(12): 2159-2167.

Miller, C. R. and L. P. Waits. 2003. The history of effective population size and genetic diversity in the Yellowstone grizzly (Ursus arctos): Implications for conservation. Proceedings of the National Academy of Sciences of the United States of America 100(7): 4334-4339.

Nakahara, F., et al. 2015. The applicability of DNA barcoding for dietary analysis of sika deer. DNA Barcodes 3(1): 200-206.

Pinder, L. 1997. Niche overlap among brown brocket deer, pampas deer, and cattle in the Pantanal of Brazil Ph.D. dissertation, University of Florida.

Prado, H. M. 2013. Feeding ecology of five Neotropical ungulates: a critical review. Oecologia Australis 17(4): 459-473.

Putman, R. 1988. The natural history of deer. Ithaca, N.Y., Comstock Pub. Associates.

Rayé, G., et al. 2010. New insights on diet variability revealed by DNA barcoding and high-throughput pyrosequencing: chamois diet in autumn as a case study. Ecological Research 26(2): 265-276.

Reed, S. P., et al. 2022. The longâ€term impacts of deer herbivory in determining temperate forest stand and canopy structural complexity. Journal of Applied Ecology 59(3): 812-821.

Richard, E. and F. Fontúrbel-Rada. 2006. Análisis de las relaciones de preferencia entre frutos componentes de la dieta de la corzuela parda Mazama gouazoubira Fischer (MAMMALIA, CERVIDAE), en un ambiente secundario de Yungas (Tucumán - Argentina). Ecología Aplicada 5(1-2).

Richard, E., et al. 1995. Hábitos frugívoros de la corzuela parda (Mazama gouazoubira, Fischer, 1814)(Mammalia: Cervidae), en un ambiente secundario de Yungas. Acta Vertebrata 22(1-2): 19-28.

Rognes, T., et al. 2016. VSEARCH: a versatile open source tool for metagenomics. PeerJ 4: e2584.

Serbent, M. P., et al. 2011. Mazama gouazoubira (Cervidae) diet during the dry season in the arid Chaco of Córdoba (Argentina). Journal of Arid Environments 75(1): 87-90.

Stallings, J. R. 1984. Notes on feeding habits of Mazama gouazoubira in the Chaco Boreal of Paraguay. Biotropica: 155-157.

Taberlet, P., et al. 2007. Power and limitations of the chloroplast trnL (UAA) intron for plant DNA barcoding. Nucleic Acids Research 35(3): e14.

Taberlet, P., et al. 1999. Noninvasive genetic sampling: look before you leap. Trends in Ecology & Evolution 14(8): 323-327.

Tosa, M. I., et al. 2023. Multiâ€locus DNA metabarcoding reveals seasonality of foraging ecology of western spotted skunks in the Pacific Northwest. Ecosphere 14(1): e4386.

Vavra, M., et al. 2007. Biodiversity, exotic plant species, and herbivory: the good, the bad, and the ungulate. Forest Ecology and Management 246(1): 66-72.

Větrovský, T., et al. 2018. SEED 2: a user-friendly platform for amplicon high-throughput sequencing data analyses. Bioinformatics 34(13): 2292-2294.

Waits, L. P. and D. Paetkau. 2005. Noninvasive genetic sampling tools for wildlife biologist: a review of applications and recommendations for accurate data collection. Journal of Wildlife Management 69(4): 1419-1433.

Downloads

Published

2024-01-31

Issue

Section

Special Contribution