Activity patterns and their relationship to the habitat use of mule deer (Odocoileus hemionus) in the Chihuahuan Desert, Mexico

Authors

  • Luz Adriana Pérez-Solano Instituto de Ecología, A. C.
  • Sonia Gallina Tessaro Instituto de Ecología, A. C.

Keywords:

arid ecosystems, behavior patterns, cervid, Mapimí, radiotelemetry.

Abstract

In desert regions, species have adapted physiologically and behaviorally to the extreme conditions of their environment, such as a lack of water and extreme temperatures. This is the case of the mule deer (Odocoileus hemionus) a species which many aspects of its relationship between behavioral ecology and habitat characteristics are unknown. The objectives of this study were: 1) to characterize the daily activity pattern of female mule deer in relationship to three behavioral patterns: resting, feeding and moving, and 2) assess the relationship between these behavioral patterns and the characteristics of the habitat. This study was conducted in the Chihuahuan Desert, where six females of mule deer were monitored using VHF radiotelemetry between 2012 and 2014. We distinguish the behavioral patterns by sensors in the collar and we quantified the number of beeps emitted per minute. Moreover, we described the daily pattern associated with these activities using Kernel density graphs and evaluated the effect of habitat variables on the frequency of resting and feeding behaviors applying a generalized linear model (GLM). We identified the location in which feeding and resting behaviors occurred, and the type of plant associations present and the percentage of area they occupied. We recorded locations over 328 days/deer. Female mule deer spent most of their time resting (63.41 %), followed by moving (21.26 %), and feeding (15.34 %). Deer movement and feeding behaviors were most frequent during the crepuscule. The temperature was the only variable that influenced resting and feeding behaviors (deviance = 4.7; d. f. = 1; P = 0.02). The estimated area used for resting was 10.35 km2, while the corresponding area for feeding was 6.45 km2, in which the plant association with dominance of Larrea tridentata, Opuntia rastrera and Fouquieria splendens was the most common. Considering the high temperatures prevailing on the region, resting most of the day likely helps deer to have an adequate thermoregulation. The time dedicated to feeding is less than the dedicated to other activities; deer may be spending more time moving than feeding due to the spatial distribution of suitable food patches, or to avoid predators. The mule deer occupy the same areas to feed and rest; however, feeding areas are smaller those used to rest, these areas have been identified in previous studies as those with the greatest use (core areas). In the plant association with greater occupation within the feeding zones, there are species reported as an essential for the deer diet; these areas are located at the foot of the hill, which gives the deer thermal protection.

Author Biographies

Luz Adriana Pérez-Solano, Instituto de Ecología, A. C.

Red de Biología y Conservación de Vertebrados

Sonia Gallina Tessaro, Instituto de Ecología, A. C.

Red de Biología y Conservación de Vertebrados

References

Alcalá-Galván, C. H., y P. Krausman. 2013. Home range and habitat use by desert mule deer in altered habitats. California Fish and Game 99:65-79.

Anderson, A. E., y O. C. Wallmo. 1984. Odocoileus hemionus. Mammalian Species 219:1-9.

Asensio, N., C. D. m Lusseau, M. Schaffner, y F. Aureli. 2012. Spider monkeys use highâ€quality core areas in a tropical dry forest. Journal of Zoology 287:250-258.

Avey, J. T., W. B. Ballard, M. C. Wallace, M. H. Humphrey, P. R. Krausman, F. Harwell, y E. B. Fish. 2003. Habitat relationships between sympatric mule deer and white-tailed deer in Texas. The Southwestern Naturalist 48:644-653.

Burt, W. H. 1943. Territoriality and home range concepts as applied to mammals. Journal of Mammalogy 24:346-352.

Calenge, C. 2006. The package “adehabitat†for the R software: A tool for the analysis of space and habitat use by animals. Ecological Modelling 197:516-519.

CONANP (Comisión Nacional de Áreas Naturales Protegidas). 2006. Programa de conservación y manejo Reserva de la Biosfera de Mapimí, México. Comisión Nacional de Áreas Naturales Protegidas. Distrito Federal, México.

Davies, N. B., J. R. Krebs, y S. A. West. 2012. An introduction to behavioural ecology. John Wiley and Sons. New York, U.S.A.

Esparza-Carlos, J. P., J. W. Laundré, L. Hernández, y L. I. Íñiguez-Dávalos. 2016. Apprehension affecting foraging patterns and landscape use of mule deer in arid environments. Mammalian Biology 81:543-550.

Gallina, S., L. García, y R. González-Trápaga. 2017. Ocotillo flowers as food resource for the mule deer during the dry season. Therya 8:185-188.

Gallina, S., y J. Bello. 2002. Ecología conductual del venado cola blanca texano. Memorias VIII Simposio sobre venados en México “Ing. Jorge Villarreal Gonzálezâ€, Tlaxcala, México.

Gallina, S., y J. Bello. 2010. El gasto energético del venado cola blanca (Odocoileus virginianus texanus) en relación a la precipitación en una zona semiárida de México. Therya 1:9-22.

Gallina, S., y J. Bello. 2014. Patrones de actividad del venado cola blanca en el noreste de México. Therya 5:423-426.

Geist, V. 1998. Deer of the World, their evolution, behavior and ecology. Stackpole books. Pennsylvania, U.S.A.

Guth, M. C. G. A. 1987. Hábitos alimenticios del venado bura (Odocoileus hemionus, Rafinesque 1817) en la Reserva de la Biosfera de Mapimí, Durango. Tesis de Licenciatura, ENEP-I UNAM. Distrito Federal, México.

Harris, G., J. G. Sanderson, J. Erz, S. E. Lehnen, y M. J, Butler. 2015. Weather and prey predict mammals’ visitation to water. PLoS ONE 10:1-21.

Heffelfinger, J. R., C. Brewer, C. H. Alcalá-Galván, B. Hale, D. L. Weybright, B. F. Wakeling, L. H. Carpenter, y N. L. Dodd. 2006. Habitat Guidelines for Mule Deer: Southwest Deserts Ecoregion. Mule Deer Working Group, Western Association of Fish and Wildlife Agencies. Arizona, U.S.A.

Hungerford, C. R., M. D. Burke, y P. F. Ftolliot. 1981. Biology and population dynamics of mule deer in Southwestern United States. Pp. 109-131 in Deer biology, habitat requirements, and management in Western North America. (Ftolliot, P. F., y S. Gallina, eds.). Instituto de Ecología. Distrito Federal, México.

Kaufman, J. H. 1962. Ecology and social behavior of the coati Nasua narica on Barro Colorado Island, Panama. University of California publications in zoology 60:95-222.

Lendrum, P. E., K. R., Crooks, y G. Wittemyer. 2017. Changes in circadian activity patterns of a wildlife community post high-intensity energy development. Journal of Mammalogy 98:1265-1271.

Mandujano, S. 2004. Análisis bibliográfico de los estudios de venados en México. Acta Zoológica Mexicana (n. s.) 20:211-251.

Mandujano, S., S. Pérez, R. Sánchez, y S. Gallina. 1996. Diferenciación de pautas de actividad del venado con ayuda de radiotransmisores con sensor de movimiento. Acta Zoológica Mexicana (n. s.) 67:67-78

Marchinton, R., y D. Hirth. 1984. Behavior. Pp. 129-168 in White-tailed deer, ecology and management (Halls, L. K., ed.) A Wildlife Management Institute Book. Stackpole books. Pennsylvania, U.S.A.

Marshal, J. P., V. C. Bleich, P. R. Krausman, M.L. Reed, y N. G. Andrew. 2006. Factors affecting habitat use and distribution of desert mule deer in an arid environment. Wildlife Society Bulletin 34:609-619.

Monroy-Vilchis, O., M. M. Zarco-González, C. Rodríguez-Soto, L. Soria-Díaz, y V. Urios. 2011. Fototrampeo de mamíferos en la Sierra Nanchititla, México: abundancia relativa y patrón de actividad. Revista de Biología Tropical 59:373-383.

Montaña, C. 1988. Las formaciones vegetales. Pp. 167-197 in Estudio integrado de los recursos vegetación, suelo y agua en la reserva de la biosfera de Mapimí (Montaña, C. ed.). Instituto de Ecología. Distrito Federal, México.

Montaña, C., y R. F. Breimer. 1988. Major vegetation and environment units. Pp. 99-114 in Estudio integrado de los recursos vegetación, suelo y agua en la Reserva de la Biosfera de Mapimí (C. Montaña, ed.). Instituto de Ecología. Distrito Federal, México.

Morrison, M. L., B. Marcot, y W. Mannan. 2006. Wildlife-habitat relationships: concepts and applications. Island Press. Washington, U.S.A.

Pérez-Solano, L. A., S. Gallina-Tessaro, y G. Sánchez-Rojas. 2016. Individual variation in mule deer (Odocoileus hemionus) habitat and home range in the Chihuahuan Desert, Mexico. Journal of Mammalogy 97:1228-1237.

Pérez-Solano L. A., L. M. García-Feria, y S. Gallina-Tessaro. 2017. Factors affecting the selection of and displacement within core areas by female mule deer (Odocoileus hemionus) in the Chihuahuan Desert, Mexico. Mammalian Biology 87:152-159.

Powell, R. A. 2000. Animal home ranges and territories and home range estimators. Pp. 65-110 in Research techniques in animal ecology: controversies and consequences (Boitani, L., y T. K. Fuller, eds.) Columbia University Press. New York, U.S.A.

QGIS Development Team. 2017. QGIS Geographic Information System. Open Source Geospatial Foundation Project. http://qgis.osgeo.org.

R Core Team. 2019. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

Rzedowski, J. 2006. Vegetación de México. Comisión Nacional para el Conocimiento y uso de la Biodiversidad. Distrito Federal, México.

Relyea, R.A., y S. Demarais. 1994. Activity of Desert Mule Deer during the Breeding Season. Journal of Mammalogy 75:940-949.

Ridout, M., y M. Linkie. 2009. Estimating overlap of daily activity patterns from camera trap data. Journal of Agricultural, Biological, and Environmental Statistics 14:322-337.

Samuel, M. D., y R. E. Green. 1988. A revised test procedure for identifying core areas within the home range. Journal of Animal Ecology 57:1067-1068.

Sánchez-Rojas, G., y S. Gallina. 2000. Factors affecting habitat use by mule deer (Odocoileus hemionus) in the central part of the Chihuahuan Desert, Mexico: an assessment with univariate and multivariate methods. Ethology Ecology and Evolution 12:405-417.

Strickland, B. K., D. G. Hewitttt, C. A. Deyoung, y R. L. Bingham. 2005. Digestible energy requirements for maintenance of body mass of white-tailed deer in southern Texas. Journal of Mammalogy 86:56-60.

Wallmo, O. 1981. Mule and black-tailed deer of North America. A Wildlife Management Institute Book. University of Nebraska Press. Nebraska, U.S.A.

Webb, S. L., M. R. Dzialak, D. Houchen, K. L. Kosciuch, y J. B. Winstead. 2013. Spatial ecology of female mule deer in an area proposed for wind energy development. Western North American Naturalist 73:347-356.

White, G. C., y R. A: Garrott. 1990. Analysis of radio-tracking data. Academic. San Diego, U.S.A.

Withey, J. C., T. D Bloxton, y J. M. Marzluff. 2001. Effects of tagging and location error in wildlife radiotelemetry studies. Pp. 43-75 in Radio tracking and animal populations (Millspaugh, J. J., y J. M. Marzluff, eds.). Academic Press. San Diego, U.S.A.

Published

2019-09-23

Issue

Section

Special Contribution