Activity patterns of the white-tailed deer (Odocoileus virginianus) in a neotropical dry forest: changes according to age, sex, and climatic season


  • Luis Cueva-Hurtado Maestría de Biología de la Conservación y Ecología Tropical, Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja, Loja, Ecuador.
  • Andrea Jara-Guerrero EcoSs_Lab, Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, Loja, Ecuador.
  • Rodrigo Cisneros EcoSs_Lab, Departamento de Ciencias Biológicas y Agropecuarias, Universidad Técnica Particular de Loja, Loja, Ecuador.
  • Carlos Ivan Espinosa Laboratorio de Ecología Tropical y Servicios Ecosistémicos (EcoSs_Lab, Universidad Técnica Particular de Loja


Activity patterns, camera trapping, circadian rhythms, seasonally dry tropical forest


Mammalian daily activity is shaped by a combination of intrinsic and extrinsic factors. Age influences activity rhythms due to energy requirements, while physiological and reproductive traits cause differences between genders. In ecosystems with marked climatic seasonality, such as the seasonally dry tropical forest (SDTF), activity patterns adapt to extrinsic factors like resource availability and environmental stress. This study investigates how intrinsic factors, specifically age and sex, influence the white-tailed deer's (Odocoileus virginianus) daily activities, and how these vary between dry and rainy seasons. Between 2015 and 2018, we conducted a camera trapping study to monitor the daily activity of a population of white-tailed deer in the Arenillas Ecological Reserve, southwestern Ecuador. We estimated individual daily activity based on four parameters: total and diurnal relative abundance index (RAI), activity directionality, and activity overlap between groups. We used generalized linear models to evaluate the changes in RAI based on age-classes and sex of the individuals. The Watson test was employed to assess differences in directional patterns during activity hours, while the Wald test was utilized to evaluate significant variations in activity overlap. The same analyses were also performed to assess changes in daily activity between the dry and rainy seasons. The daily activity patterns of white-tailed deer varied by age and sex. Fawns were predominantly diurnal, whereas adults displayed continuous activity throughout the 24 hours of the day, with males being more active during the night than females. Females did not show significant differences in the activity pattern compared to fawns and juveniles. The daily activity pattern of white-tailed deer varied between seasons. Overall, there was an increase in daily activity during the dry season, but significant only for males. Females were the only group that showing seasonal variation in activity directionality, with more morning activity during the dry season. The daily activity patterns of white-tailed deer in the dry forest exhibit slight differences compared to those observed in other ecosystems, with extended daily activity periods. During the rainy season, reproductive and post-reproductive behaviors, rather than resource abundance, predominantly shaped the white-tailed deer's daily activity patterns. In contrast, the dry season presented a notable rise in overall activity and daily activity, accompanied by partition between groups. This partition likely stems from diminished resource accessibility and increased intraspecific competition. Given the slight differences in the white-tailed deer's daily activity from those noted in other regions, these insights are crucial for formulating management and conservation strategies tailored to specific environmental conditions.


Agostinelli, C., & Ulric, L. (2022). R package “circularâ€: Circular Statistics (version 0.4-95).

Ahumada, J. A., Hurtado, J., & Lizcano, D. (2013). Monitoring the Status and Trends of Tropical Forest Terrestrial Vertebrate Communities from Camera Trap Data: A Tool for Conservation. PLoS ONE, 8(9), e73707.

Balme, G. A., Slotow, R., & Hunter, L. T. B. (2010). Edge effects and the impact of non-protected areas in carnivore conservation: Leopards in the Phinda-Mkhuze Complex, South Africa: Impact of edge effects on carnivore conservation. Animal Conservation, 13(3), 315–323.

Beier, P., & McCullough, D. R. (1990). Factors Influencing White-Tailed Deer Activity Patterns and Habitat Use. Wildlife Monographs, 109, 3–51.

Berger, A., Scheibe, K.-M., Brelurut, A., Schober, F., & Streich, W. J. (2002). Seasonal Variation of Diurnal and Ultradian Rhythms in Red Deer. Biological Rhythm Research, 33(3), 237–253.

Bowyer, R. T. (2004). Sexual Segregation in Ruminants: Definition, Hypotheses and Implications for Conservation and Management. Journal of Mammalogy, 85(6), 1039–1052.

Bradshaw, W. E., & Holzapfel, C. M. (2010). What Season Is It Anyway? Circadian Tracking vs. Photoperiodic Anticipation in Insects. Journal of Biological Rhythms, 25(3), 155–165.

Cherry, M. J., Conner, L. M., & Warren, R. J. (2015). Effects of predation risk and group dynamics on white-tailed deer foraging behavior in a longleaf pine savanna. Behavioral Ecology, 26(4), 1091–1099.

Cornicelli, L., Woolf, A., & Roseberry, J. L. (1996). White-Tailed Deer Use of a Suburban Environment in Southern Illinois. Volume 89(1 and 2), 93–103.

Crawford, D. A., Cherry, M. J., Kelly, B. D., Garrison, E. P., Shindle, D. B., Conner, L. M., Chandler, R. B., & Miller, K. V. (2019). Chronology of reproductive investment determines predation risk aversion in a felidâ€ungulate system. Ecology and Evolution, 9(6), 3264–3275.

Dodd, A. N., Salathia, N., Hall, A., Kévei, E., Tóth, R., Nagy, F., Hibberd, J. M., Millar, A. J., & Webb, A. A. R. (2005). Plant Circadian Clocks Increase Photosynthesis, Growth, Survival, and Competitive Advantage. Science, New Series, 309(5734), 630–633.

Donohue, R. N., Hewitt, D. G., Fulbrigth, T. E., Deyoung, C. A., Litt, A. R., & Draeger, D. A. (2013). Aggressive Behavior of White-Tailed Deer at Concentrated Food Sites as Affected by Population Density. The Journal of Wildlife Management, 77(7), 1401–1408.

Espinosa, C. I. (2012). Bosques tropicales secos de la región Pacífico Ecuatorial: Diversidad, estructura, funcionamiento e implicaciones para la conservación. Ecosistemas, 21, 167–179.

Flinn, J. J., Demaris, S., Strickland, B. K., Gee, K. L., Webb, S. L., Jones, P. D., & Jacobson, H. A. (2015). Estimating Age and Antler Traits of Photographed Male White-tailed Deer.

Fortin, D., Boyce, M. S., & Merrill, E. H. (2004). Multi-Tasking by Mammalian Herbivores: Overlapping Processes during Foraging. Ecology, 85(8), 2312–2322.

Fuller, T. K., Silva, A. M., Montalvo, V. H., Sáenz-Bolaños, C., & Carrillo J, E. (2020). Reproduction of white-tailed deer in a seasonally dry tropical forest of Costa Rica: A test of aseasonality. Journal of Mammalogy, 101(1), 241–247.

Gaillard, J.-M., Festa-Bianchet, M., Delorme, D., & Jorgenson, J. (2000). Body mass and individual fitness in female ungulates: Bigger is not always better. Proceedings of the Royal Society of London. Series B: Biological Sciences, 267(1442), 471–477.

Galindo Leal, C., & Weber, M. (1998). El Venado de la Sierra Madre Occidental: Ecología, Manejo y Conservación.

Gallina, S., & Bello Gutierrez, J. (2014). Patrones de actividad del venado cola blanca en el noreste de México. Therya, 5(2), 423–436.

Gallina, S., & Bello, J. (2010). El Gasto Energético del Venado Cola Blanca (Odocoileus Virginianus Texanus) en Relación a La Precipitación en una Zona Semiárida de México. Therya, 1(1), 9–22.

Halberg, F. (1960). The 24-Hour Scale: A Time Dimension of Adaptive Functional Organization. Perspectives in Biology and Medicine, 3(4), 491–527.

Hawkins, R. E., & Klimstra, W. D. (1970). A Preliminary Study of the Social Organization of White-Tailed Deer. The Journal of Wildlife Management, 34(2), 407.

Holzenbein, S., & Schwede, G. (1989). Activity and Movements of Female White-Tailed Deer during the Rut. The Journal of Wildlife Management, 53(1), 219.

Hut, R. A., Kronfeld-Schor, N., van der Vinne, V., & De la Iglesia, H. (2012). In search of a temporal niche. En Progress in Brain Research (Vol. 199, pp. 281–304). Elsevier.

Jara-Guerrero, A., Escribano-Avila, G., Espinosa, C. I., De la Cruz, M., & Méndez, M. (2018). White-tailed deer as the last megafauna dispersing seeds in Neotropical dry forests: The role of fruit and seed traits. Biotropica, 50(1), 169–177.

Jaraâ€Guerrero, A., Espinosa, C. I., Méndez, M., De La Cruz, M., & Escudero, A. (2020). Dispersal syndrome influences the match between seed rain and soil seed bank of woody species in a Neotropical dry forest. Journal of Vegetation Science, 31(6), 995–1005.

Jara-Guerrero, A., González-Sánchez, D., Escudero, A., & Espinosa, C. I. (2021). Chronic Disturbance in a Tropical Dry Forest: Disentangling Direct and Indirect Pathways Behind the Loss of Plant Richness. Frontiers in Forests and Global Change, 4, 723985.

Lashley, M. A., Chitwood, M. C., Biggerstaff, M. T., Morina, D. L., Moorman, C. E., & DePerno, C. S. (2014). White-Tailed Deer Vigilance: The Influence of Social and Environmental Factors. PLoS ONE, 9(3), e90652.

Lashley, M. A., Cove, M. V., Chitwood, M. C., Penido, G., Gardner, B., DePerno, C. S., & Moorman, C. E. (2018). Estimating wildlife activity curves: Comparison of methods and sample size. Scientific reports, 8(1), 1–11.

Lenth, R. V., Bolker, B., Buerkner, P., Giné-Vázquez, I., Herve, M., Jung, M., Love, J., Miguez, F., Riebl, H., & Singmann, H. (2023). emmeans: Estimated Marginal Means, aka Least-Squares Means (1.8.7).

Leuthold, B. M., & Leuthold, W. (1978). Daytime activity patterns of gerenuk and giraffe in Tsavo National Park, Kenya. African Journal of Ecology, 16(4), 231–243.

Libert, S., Bonkowski, M. S., Pointer, K., Pletcher, S. D., & Guarente, L. (2012). Deviation of innate circadian period from 24 h reduces longevity in mice: Impact of circadian clock on longevity. Aging Cell, 11(5), 794–800.

Luna-Florin, A. D., Nole-Nole, D. A., Rodríguez-Caballero, E., Molina-Pardo, J. L., & Giménez-Luque, E. (2022). Ecological Characterization of the Flora in Reserva Ecológica Arenillas, Ecuador. Applied Sciences, 12(17), 8656.

Main, M. B., Weckerly, F. W., & Bleich, V. C. (1996). Sexual Segregation in Ungulates: New Directions for Research. Journal of Mammalogy, 77(2), 449–461.

Mandujano, S., & Gallina, S. (1995). Comparison of Deer Censusing Methods in Tropical Dry Forest. Wildlife Society Bulletin (1973-2006), 23(2), 180–186.

Mandujano, S., & Gallina, S. (1996). Size and composition of white-tailed deer groups in a tropical dry forest in Mexico. Ethology Ecology & Evolution, 8(3), 255–263.

Massé, A., & Côté, S. D. (2013). Spatiotemporal variations in resources affect activity and movement patterns of white-tailed deer ( Odocoileus virginianus ) at high density. Canadian Journal of Zoology, 91(4), 252–263.

McShea, W. J. (2012). Ecology and management of white-tailed deer in a changing world: Deer and eastern forests. Annals of the New York Academy of Sciences, 1249(1), 45–56.

Meredith, M., Ridout, M., & Meredith, M. M. (2018). Package ‘overlap’. Estimates of coefficient of overlapping for animal activity patterns, 3, 1.

Ministerio del Ambiente. (2014). Plan de Manejo de la Reserva Ecológica Arenillas. Quito, Ecuador. 68p.

Monteith, K. L., Schmitz, L. E., Jenks, J. A., Delger, J. A., & Bowyer, R. T. (2009). Growth of Male White-Tailed Deer: Consequences of Maternal Effects. Journal of Mammalogy, 90(3), 651–660.

Owenâ€Smith, N. (1998). How high ambient temperature affects the daily activity and foraging time of a subtropical ungulate, the greater kudu ( Tragelaphus strepsiceros ). Journal of Zoology, 246(2), 183–192.

Owenâ€Smith, N., & Goodall, V. (2014). Coping with savanna seasonality: Comparative daily activity patterns of A frican ungulates as revealed by GPS telemetry. Journal of Zoology, 293(3), 181–191.

Ozoga, J. J., & Verme, L. J. (1986). Relation of Maternal Age to Fawn-Rearing Success in White-Tailed Deer. The Journal of Wildlife Management, 50(3), 480.

R Core Team. (2022). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. http://www. R-project. org/.

Ridout, M. S., & Linkie, M. (2009). Estimating overlap of daily activity patterns from camera trap data. Journal of Agricultural, Biological, and Environmental Statistics, 14(3), 322–337.

Rojas, G. S., Gallina, S., & Mandujano, S. (1997). Area de actividad y uso del habitat de dos venados cola blanca (Odocoileus virginianus) en un bosque tropical de la costa de Jalisco, México. ACTA ZOOLÓGICA MEXICANA (N.S.), 72, Article 72.

Rooney, T. P., & Waller, D. M. (2003). Direct and indirect effects of white-tailed deer in forest ecosystems. Forest Ecology and Management, 181(1–2), 165–176.

Rovero, F., & Marshall, A. R. (2009). Camera trapping photographic rate as an index of density in forest ungulates. Journal of Applied Ecology, 46(5), 1011–1017.

Rowcliffe, J. M., Kays, R., Kranstauber, B., Carbone, C., & Jansen, P. A. (2014). Quantifying levels of animal activity using camera trap data. Methods in Ecology and Evolution, 5(11), 1170–1179.

Rowcliffe, J. M., & Rowcliffe, M. M. (2016). Package ‘activity’. Animal activity statistics R Package Version, 1.

Saisamorn, A., Duengkae, P., Pattanavibool, A., Duangchantrasiri, S., Simcharoen, A., & Smith, J. L. D. (2019). Spatial and temporal analysis of leopards ( Panthera pardus ), their prey and tigers (Panthera tigris) in Huai Kha Khaeng Wildlife Sanctuary, Thailand. Folia Oecologica, 46(2), 73–82.

Sánchez Rojas, G., Gallina, S., & Mandujano, S. (1997). Area de actividad y uso del habitat de dos venados cola blanca (Odocoileus virginianus) en un bosque tropical de la costa de Jalisco, México. ACTA ZOOLÓGICA MEXICANA (N.S.), 0(72), 39–54.

Scheibe, K. M., Berger, A., Langbein, J., Streich, W. J., & Eichhorn, K. (1999). Comparative Analysis of Ultradian and Circadian Behavioural Rhythms for Diagnosis of Biorhythmic State of Animals. Biological Rhythm Research, 30(2), 216–233.

Scheibe, K. M., Robinson, T. L., Scheibe, A., & Berger, A. (2009). Variation of the phase of the 24-h activity period in different large herbivore species under European and African conditions. Biological Rhythm Research, 40(2), 169–179.

Sierra, M. (1999). Propuesta preliminar de un sistema de clasificación de vegetación para el Ecuador continental. Proyecto Inefan/Gef-Birf y Ecociencia.

Spoelstra, K., Wikelski, M., Daan, S., Loudon, A. S. I., & Hau, M. (2016). Natural selection against a circadian clock gene mutation in mice. Proceedings of the National Academy of Sciences, 113(3), 686–691.

Stone, D. B., Cherry, M. J., Martin, J. A., Cohen, B. S., & Miller, K. V. (2017). Breeding chronology and social interactions affect ungulate foraging behavior at a concentrated food resource. PLOS ONE, 12(6), e0178477.

Townsend, T. W., & Bailey, E. D. (1981). Effects of Age, Sex and Weight on Social Rank in Penned White-tailed Deer. American Midland Naturalist, 106(1), 92.

Valeix, M., Chamaillé-Jammes, S., & Fritz, H. (2007). Interference competition and temporal niche shifts: Elephants and herbivore communities at waterholes. Oecologia, 153(3), 739–748.

Webb, S. L., Gee, K. L., Strickland, B. K., Demarais, S., & DeYoung, R. W. (2010). Measuring Fine-Scale White-Tailed Deer Movements and Environmental Influences Using GPS Collars. International Journal of Ecology, 2010, 1–12.

Yearsley, J. M., & Javier Pérez-Barbería, F. (2005). Does the activity budget hypothesis explain sexual segregation in ungulates? Animal Behaviour, 69(2), 257–267.