Rodents of the eastern and western slopes of the Tropical Andes: phylogenetic and taxonomic insights using DNA barcodes

Authors

  • Miguel Pinto
  • Reed Ojala-Barbour
  • Jorge Brito
  • Angélica Menchaca
  • André L. G. Carvalho
  • Marcelo Weksler
  • George Amato
  • Thomas E. Lee

Keywords:

Akodon, Andes, Chilomys, Echimyidae, Ecuador, Microryzomys, Oligoryzomys, Sigmodontinae, species delimitation, Thomasomys

Abstract

The Andes Mountains particularly the forests along the mid-elevations of their eastern and western slopes, are a hotspot of biodiversity (high numbers of species and endemics). Among mammals, rodents are a priority group for study in the Tropical Andes given their high diversity and often relatively small geographic ranges. Here, we use DNA barcoding as a tool to help in the identification, and preliminary analysis of the phylogenetic relationships, of rodents from two natural reserves: Otonga, a private forest reserve, located on the western slopes, and Sangay National Park, located on the eastern slopes of the Ecuadorian Andes. We sequenced 657 bp of the mitochondrial Cytochrome Oxidase I (COI) gene for 201 tissue samples of sigmodontine and echimyid rodents collected primarily in Otonga and Sangay. We conducted phylogenetic analyses using maximum-likelihood and Poisson tree processes (PTP) species delimitation analyses. Three sets of data were analyzed: 1) our newly generated sequences, 2) our Mesomys sequence plus DNA sequences of Echimyidae available in GenBank, and 3) all of our sequences (all Sigmodontinae and one Echimyidae) together with relevant DNA sequences of Sigmodontinae available in GenBank. Our samples consisted of 24 species; the molecular data indicated that only one species—Microryzomys minutus—was shared between both eastern and western localities. Contrary to the currently recognized distributions of Akodon mollis and Chilomys instans, our species delimitation analysis suggests that these species are not shared between Otonga and Sangay, and may actually represent two species each. The sample of Mesomys from the eastern slopes of the Andes differs minimally from that from the lowlands of the Ecuadorian Amazon, suggesting that both populations would correspond to the same species, Mesomys hispidus. Both Mindomys hammondi and an undescribed Mindomys from Otonga do not form a reciprocally monophyletic group with relation to Nephelomys. The Nephelomys of Sangay might correspond to two different species. The eastern and western slopes of the Tropical Andes harbor different species of rodents, with only one of our study species shared between both localities, implying that other cases of shared species between the eastern and the western slopes of the Andes need further assessment. Several lineages represented in our sample may require formal taxonomic description, highlighting the need for further systematic research. The new genetic data generated in our study could speed taxonomic discovery in the Andes and help to illuminate interesting evolutionary patterns, such as the radiation of Thomasomys.

References

Alvarado-Serrano, D. F., L. Luna, and L. L. Knowles. 2013. Localized versus generalist phenotypes in a broadly distributed tropical mammal: how is intraspecific variation distributed across disparate environments? BMC Evolutionary Biology 13:160.

Amador, L. I., R. L. M. Arévalo, F. C. Almeida, S. A. Catalano, and N. P. Giannini. In press. Bat systematics in the light of unconstrained analyses of a comprehensive molecular supermatrix. Journal of Mammalian Evolution.

Armstrong, G. D., and A. Macey. 1979. Proposals for a Sangay National Park in Ecuador. Biological Conservation 16:43–61.

Bensasson, D., D.-X. Zhang, D. L. Hartl and G. M. Hewitt. 2001. Mitochondrial pseudogenes: evolution’s misplaced witnesses. Trends in Ecology & Evolution 16:314–321.

Bernal, X. E., and C. M. Pinto. 2016. Sexual differences in prevalence of a new species of trypanosome infecting túngara frogs. International Journal for Parasitology: Parasites and Wildlife 5:40–47.

Borisenko, A. V., B. K. Lim, N. V. Ivanova, R. H. Hanner, and P. D. N. Hebert. 2008. DNA barcoding in surveys of small mammal communities: a field study in Suriname. Molecular Ecology Resources 8:471–479.

Brito, J., and R. Ojala-Barbour. 2014. Presencia de la rata invasora Rattus rattus (Rodentia: Muridae) en el Parque Nacional Sangay, Ecuador. Therya 5:323–329.

Brito, J., H. Orellana, and G. Tenecota. 2014. Descripción del nido de Hylaeamys yunganus (Rodentia: Cricetidae) de los Andes del sureste de Ecuador. Avances en Ciencias e Ingenierías 6:B10–B12.

Brito, J., N. Tinoco, and F. Zornoza. 2015. Nuevo registro distribucional del ratón endémico Nephelomys nimbosus (Rodentia: Cricetidae) en el suroriente de Ecuador. Therya 6:667–674.

Brito, J. M., N. Tinoco, D. Chávez, P. Moreno-Cárdenas, D. Batallas, and R. Ojala-Barbour. 2017. New species of arboreal rat of the genus Rhipidomys (Cricetidae, Sigmodontinae) from Sangay National Park, Ecuador. Neotropical Biodiversity 3:65–79.

Carleton, M. D., and G. G. Musser. 1989. Systematic studies of oryzomyine rodents (Muridae, Sigmodontinae): a synopsis of Microryzomys. Bulletin of the American Museum of Natural History 191:1–83.

Carstens, B. C., T. A. Pelletier, N. M. Reid, and J. D. Satler. 2013. How to fail at species delimitation. Molecular Ecology 22:4369–4383.

Clare, E. L., B. K. Lim, M. D. Engstrom, J. L. Eger, and P. D. N. Hebert. 2007. DNA barcoding of Neotropical bats: species identification and discovery within Guyana. Molecular Ecology Notes 7:184–190.

Cottontail, V. M. et al. 2014. High local diversity of Trypanosoma in a common bat species, and implications for the biogeography and taxonomy of the T. cruzi clade. PLoS ONE 9:e108603.

Edgar, R. C. 2004. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research 32:1792–1797.

Eldredge, N., and Cracraft, J. 1980. Phylogenetic patterns and the evolutionary process: methods and theory in comparative biology. Columbia University Press, New York.

Ermakov, O. A. et al. 2015. Implications of hybridization, NUMTs, and overlooked diversity for DNA barcoding of Eurasian ground squirrels. PLOS ONE 10:e0117201.

Foley, N. M., M. S. Springer, and E. C. Teeling. 2016. Mammal madness: is the mammal tree of life not yet resolved? Philosophical Transactions of the Royal Society B 371:20150140.

Fonseca, R. M. et al. 2003. Identificación preliminar de un corredor ecológico para mamíferos entre los parques nacionales Llanganates y Sangay. Revista de la Pontificia Universidad Católica del Ecuador 71:201–216.

González-Ittig, R. E., P. C. Rivera, S. C. Levis, G. E. Calderón, and C. N. Gardenal. 2014. The molecular phylogenetics of the genus Oligoryzomys (Rodentia: Cricetidae) clarifies rodent host-hantavirus associations: Rodent Host-Hantavirus genotype relationships. Zoological Journal of the Linnean Society 171:457–474.

Harris, S. E., and M. Bellino. 2013. DNA barcoding from NYC to Belize. Science 342:1462–1463.

Hebert, P. D. N., A. Cywinska, S. L. Ball, and J. R. deWaard. 2003. Biological identifications through DNA barcodes. Proceedings of the Royal Society of London B: Biological Sciences 270:313–321.

Hebert, P. D. N., and T. R. Gregory. 2005. The promise of DNA barcoding for taxonomy. Systematic biology 54:852–859.

Helgen, K. M. et al. 2009. Taxonomic boundaries and geographic distributions revealed by an integrative systematic overview of the mountain coatis, Nasuella (Carnivora: Procyonidae). Small Carnivore Conservation 41:65–74.

Helgen, K. M. et al. 2013. Taxonomic revision of the olingos (Bassaricyon), with description of a new species, the Olinguito. ZooKeys 324:1–83.

Hughes, C., and R. Eastwood. 2006. Island radiation on a continental scale: Exceptional rates of plant diversification after uplift of the Andes. Proceedings of the National Academy of Sciences 103:10334–10339.

Jarrín, P. 2001. Mamíferos en la niebla Otonga, un bosque nublado del Ecuador. Museo de Zoología, Centro de Biodiversidad y Ambiente, Pontificia Universidad Católica del Ecuador, Quito.

Lee, T. E., C. Boada-Terán, A. M. Scott, S. F. Burneo, and J. D. Hanson. 2011. Small mammals of Sangay National Park, Chimborazo Province and Morona Santiago Province, Ecuador. Occasional Papers Museum of Texas Tech University 305:1–16.

Lee, T. E., A. R. Ritchie, S. Vaca-Puente, J. M. Brokaw, M. A. Camacho, and S. F. Burneo. 2015. Small mammals of Guandera Biological Reserve, Carchi Province, Ecuador and comparative Andean small mammal ecology. Occasional Papers Museum of Texas Tech University 334:1–20.

Maestri, R., and B. D. Patterson. 2016. Patterns of species richness and turnover for the South American rodent fauna. PLOS ONE 11:e0151895.

Meredith, R. W., J. E. JaneÄka, J. Gatesy, O. A. Ryder, C. A. Fisher, E. C. Teeling, A. Goodbla, E. Eizirik, T. L. Simão, T. Stadler, and D. L Rabosky. 2011. Impacts of the Cretaceous terrestrial revolution and KPg extinction on mammal diversification. Science 334:521–524.

Messing, J. 1983. New M13 vectors for cloning. Methods in Enzymology 101:20–78.

Monasterio, M., and L. Sarmiento. 1991. Adaptive radiation of Espeletia in the cold Andean tropics. Trends in Ecology & Evolution 6:387–391.

Müller, L. et al. 2013. DNA barcoding of sigmodontine rodents: identifying wildlife reservoirs of zoonoses. PLoS ONE 8:e80282.

Myers, N., R. A. Mittermeier, C. G. Mittermeier, G. A. B. da Fonseca, and J. Kent. 2000. Biodiversity hotspots for conservation priorities. Nature 403:853–858.

Nicolas, V. et al. 2012. Assessment of three mitochondrial genes (16S, Cytb, CO1) for identifying species in the Praomyini tribe (Rodentia: Muridae). PLoS ONE 7:e36586.

Nürk, N. M., C. Scheriau, and S. Madriñán. 2013. Explosive radiation in high Andean Hypericum—rates of diversification among New World lineages. Frontiers in genetics 4:175.

Ojala-Barbour, R., C. M. Pinto, J. Brito, L. Albuja, T. E. Lee, and B. D. Patterson. 2013. A new species of shrew-opossum (Paucituberculata: Caenolestidae) with a phylogeny of extant caenolestids. Journal of Mammalogy 94:967–982.

Pacheco, V. 2003. Phylogenetic analyses of the Thomasomyini (Muroidea: Sigmodontinae) based on morphological data. City University of New York.

Pacheco, V. 2015. Genus Thomasomys Coues, 1884. Pp. 617–682 in Mammals of South America (Patton, J. L., U. F. J. Pardiñas, and G. D’Elía, eds.). The University of Chicago Press. Chicago & London.

Patterson, B. D. 2002. On the continuing need for scientific collecting of mammals. Mastozoología Neotropical 9:253–262.

Patton, J. L., M. N. F. Da Silva, and J. R. Malcolm. 1994. Gene genealogy and differentiation among arboreal spiny rats (Rodentia: Echimyidae) of the Amazon basin: A test of the riverine barrier hypothesis. Evolution 48:1314–1323.

Patton, J. L., M. N. F. Da Silva, and J. R. Malcolm. 2000. Mammals of the Rio Juruá and the evolutionary and ecological diversification of Amazonia. Bulletin of the American Museum of Natural History 244:1–306.

Patton, J. L., U. F. J. Pardiñas, and G. D’Elía (eds.). 2015. Mammals of South America, Volume 2: Rodents. The University of Chicago Press. Chicago and London.

Percequillo, A. R. 2003. Sistemática de Oryzomys Baird, 1858: definição dos grupos de espécies e revisão taxonômica do grupo albigularis (Rodentia, Sigmodontinae). Universidade de São Paulo.

Percequillo, A. R. 2015. Genus Nephelomys Weksler, Percequillo, and Voss, 2006. Pp. 377–390 in Mammals of South America (Patton, J. L. , U. F. J. Pardiñas, and G. D’Elía, eds.). The University of Chicago Press. Chicago & London.

Pinto, C. M. et al. 2016. Archaeology, biogeography, and mammalogy do not provide evidence for tarukas (Cervidae: Hippocamelus antisensis) in Ecuador. Journal of Mammalogy 97:41–53.

Pons, J. et al. 2006. Sequence-based species delimitation for the DNA taxonomy of undescribed insects. Systematic Biology 55:595–609.

Prado, J. R. et al. 2015. Species richness and areas of endemism of oryzomyine rodents (Cricetidae, Sigmodontinae) in South America: an ndm/vndm approach. Journal of Biogeography 42:540–551.

Stamatakis, A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313.

Salazar-Bravo, J. , and T. L. Yates. 2007. A new species of Thomasomys (Cricetidae: Sigmodontinae) from central Bolivia. Pp. 747-774 in The Quintessential Naturalist: Honoring the Life and Legacy of Oliver P. Pearson. (Kelt, D. A., E. P. Lessa, J. Salazar-Bravo, and J. L. Patton, eds.). University of California Publications in Zoology 134:1-981.

Salazar-Bravo, J. , U. F. J. Pardiñas, H. Zeballos,, and P. Teta. 2016. Description of a new tribe of sigmodontine rodents (Cricetidae: Sigmodontinae) with updated summary of valid tribes and their generic contents. Occassional Papers Museum of Texas Tech University 338:1-24.

Tang, C. Q., A. M. Humphreys, D. Fontaneto, and T. G. Barraclough. 2014. Effects of phylogenetic reconstruction method on the robustness of species delimitation using single-locus data. Methods in Ecology and Evolution 5:1086–1094.

Tinoco López, N. O. 2015. Caracterización molecular, morfológica y morfometrica del complejo Nephelomys albigularis Tomes, 1860 (Rodentia: Cricetidae), y su distribución en el Ecuador. Pontificia Universidad Católica del Ecuador.

Tobe, S. S., A. C. Kitchener, and A. M. T. Linacre. 2010. Reconstructing mammalian phylogenies: a detailed comparison of the cytochrome b and cytochrome oxidase subunit I mitochondrial genes. PLoS ONE 5:e14156.

Upham, N. S., R. Ojala-Barbour, J. Brito M, P. M. Velazco, and B. D. Patterson. 2013. Transitions between Andean and Amazonian centers of endemism in the radiation of some arboreal rodents. BMC Evolutionary Biology 13:191.

Voss, R. S. 2003. A new species of Thomasomys (Rodentia: Muridae) from eastern Ecuador, with remarks on mammalian diversity and biogeography in the Cordillera Oriental. American Museum Novitates 3421:1–47.

Voss, R. S. 2009. Review of: Mammals of South America. Volume 1: Marsupials, xenarthrans, shrews, and bats (Gardner A. L., ed.). Journal of Mammalogy 90:521–523.

Weksler, M. 2006. Phylogenetic relationships of oryzomine rodents (Muroidea: Sigmodontinae): separate and combined analyses of morphological and molecular data. Bulletin of the American Museum of Natural History 296:1–149.

Weksler, M., and C. R. Bonvicino. 2005. Taxonomy of pigmy rice rats genus Oligoryzomys Bangs, 1900 (Rodentia, Sigmodontinae) of the Brazilian Cerrado, with the description of two new species. Arquivos do Museu Nacional 63:113–130.

Weksler, M., and C. R. Bonvicino. 2015. Genus Oligoryzomys Bangs, 1900. Pp. 417–437 in Mammals of South America (Patton, J. L., U. F. J. Pardiñas, and G. D’Elía, eds.). The University of Chicago Press. Chicago & London.

Weksler, M., E. M. Lemos, P. S. D’Andrea, and C. R. Bonvicino. 2017. The taxonomic status of Oligoryzomys mattogrossae (Allen 1916)(Rodentia: Cricetidae: Sigmodontinae), reservoir of Anajatuba Hantavirus. American Museum Novitates 3880:1-32.

Weksler, M., A. R. Percequillo, and R. S. Voss. 2006. Ten new genera of oryzomyine rodents (Cricetidae: Sigmodontinae). American Museum Novitates 3537:1–29.

Zhang, J., P. Kapli, P. Pavlidis, and A. Stamatakis. 2013. A general species delimitation method with applications to phylogenetic placements. Bioinformatics 29:2869–2876.

Zwickl, D. J., and D. M. Hillis. 2002. Increased taxon sampling greatly reduces phylogenetic error. Systematic Biology 51:588–598.

Downloads

Published

2018-01-15

Issue

Section

Articles