Influence of trace elements in the epigenetic of mammals

Authors

  • Lia Celina Mendez Rodriguez Centro de Investigaciones Biológicas del Noroeste, S.C.
  • Sergio Ticul Alvarez-Castañeda

Keywords:

contaminación, elementos traza, gen, metilación ADN, toxicidad

Abstract

Introduction: Chronic exposure to toxic levels of elements such as arsenic, cadmium, lead, mercury, nickel and others trace elements might cause abnormalities in gene expression affecting metabolic pathways such as those related to trace elements detoxification and the reproductive ability of animals. Rodent species have been the subject of several studies examining the physiological consequences of exposure to toxic levels of arsenic, cadmium and nickel, and how those elements affect their epigenetic mechanisms such as DNA methylation. Results from those studies can be used as an approach of the effects that can potentially occur on small mammals found in sites altered by geochemical or anthropogenic activities (e. g. mining, industrial waste).Methods: An exhaustive literature review was conducted aimed to gain a better understanding of epigenetics, identifying mechanisms involved in the toxicity of trace elements, elucidating the effect of those trace metals in the epigenetics of genes involved in detoxification mechanisms and, finally, determining whether damages caused by exposition to high levels of trace elements are equally evident on any tissue from the same organism.Results and Discussion: Pollutants can influence methylation of DNA patterns, but not all of them follow the same pathway. This varies widely among groups of trace elements or organic compounds. In addition to concentration and time of exposure, a number of other factors affect the toxicity pathway, including age, sex, food sources and, especially, the physiology of the species. Even within the same organism, the methylation patterns associated to a given element vary between tissues. Therefore, selecting the most appropriate tissue for discerning the animal´s actual condition is key when assessing the actual health status of wildlife species. Further studies are needed to better characterize the interactions between DNA methylation and trace elements, and elucidate potential mechanisms or interventions that can help to reduce their effects on wildlife health.Key words: ADN methylation, gene, pollution, trace elements, toxicity.

Author Biography

Lia Celina Mendez Rodriguez, Centro de Investigaciones Biológicas del Noroeste, S.C.

Programa de Planeación Ambiental y Conservación.Investigador Titular

References

ADRIANO, D. C. 2001. Trace elements in terrestrial environments: biogeochemistry, bioavailability, and risks of metals. Springer. New York, New York, EE. UU.

AMARAL, A., C. CABRAL, GUEDES, C., AND A. RODRIGUES. 2007. Apoptosis, metallothionein, and bioavailable metals in domestic mice (Mus musculus L.) from a human-inhabited volcanic area. Ecotoxicology 16:475–482.

ANTEQUERA, F., AND A. BIRD. 1993. Number of CpG islands and genes in human and mouse. Proceedings of the National Academy of Sciences 90:11995–11999.

ANTEQUERA, F., AND A. BIRD. 1999. CpG islands as genomic footprints of promoters that are associated with replication origins. Current Biology 9:R661–R667.

ARITA, A., AND M. COSTA. 2009. Epigenetics in metal carcinogenesis: nickel, arsenic, chromium and cadmium. Metallomics 1:222–228.

ASCHNER, M., M. G. CHERIAN, C. D. KLAASSEN, R. D. PALMITER, J. C. ERICKSON, AND A. I. BUSH. 1997. Metallothioneins in brain—the role in physiology and pathology. Toxicology and applied pharmacology 142:229–242.

ASHWORTH, C. J., L. M. TOMA, AND M. G. HUNTER. 2009. Nutritional effects on oocyte and embryo development in mammals: implications for reproductive efficiency and environmental sustainability. Philosophical Transactions of the Royal Society B: Biological Sciences 364:3351–3361.

BACCARELLI, A., AND V. BOLLATI. 2009. Epigenetics and environmental chemicals. Current Opinion in Pediatrics 21:243–251.

BAYLIN, S. B. 2005. DNA methylation and gene silencing in cancer. Nature Clinical Practice Oncology 2:S4–S11.

BERTOLERO, F., G. POZZI, E. SABBIONI, AND U. SAFFIOTTI. 1987. Cellular uptake and metabolic reduction of pentavalent to trivalent arsenic as determinants of cytotoxicity and morphological transformation. Carcinogenesis 8:803–808.

BESTOR, T. H. 2000. The DNA methyltransferases of mammals. Human Molecular Genetic 9:2395–2402.

BIRD, A. P. 1986. CpG–rich islands and the function of DNA methylation. Nature 321:209–213.

BIRD, A. 2002. DNA methylation patterns and epigenetic memory. Genes and Development 16:6–21.

BRUGNERA, E., O. GEORGIEV, F. RADTKE, R. HEUCHEL, E. BAKER, G. R. SUTHERLAND, AND W. SCHAFFNER. 1994. Cloning, chromosomal mapping and characterization of the human metal–regulatory transcription factor MTF–1. Nucleic Acids Research 22:3167–3173.

CALEVRO, F., S. CAMPANI, M. RAGGHIANTI, S. BUCCI, AND G. MANCINO. 1998. Tests of toxicity and teratogenicity in biphasic vertebrates treated with heavy metals (Cr3+, A1 3+, Cd 2+). Chemosphere 37:3011–3017.

CHEN, L., A. M. MACMILLAN, W. CHANG, K. EZAZ–NIKPAY, W. S. LANE, AND G. L.VERDINE. 1991. Direct identification of the active–site nucleophile in a DNA (cytosine-5)-methyltransferase. Biochemistry 30:11018–11025.

CHOE, S. Y., S. J. KIM, H. G. KIM, J. H. LEE, Y. CHOI, H. LEE, AND Y. KIM. 2003. Evaluation of estrogenicity of major heavy metals. Science of the Total Environment 312:15–21.

DEWEY, M. J., AND W. D. DAWSON. 2001. Deer mice: “The Drosophila of North American mammalogyâ€. Genesis 29:105–109.

DIAMANTI–KANDARAKIS, E., J. P. BOURGUIGNON, L. C. GIUDICE, R. HAUSER, G. S. PRINS, A. M. SOTO, ZOELLER, T. R., AND A. C. GORE. 2009. Endocrine–disrupting chemicals: an Endocrine Society scientific statement. Endocrine Reviews 30:293–342.

EGGER, G., G. LIANG, A. APARICIO, AND P. A. JONES. 2004. Epigenetics in human disease and prospects for epigenetic therapy. Nature 429:457–463.

GHOSHAL, K., S. MAJUMDER, Z. LI, X. DONG, AND S. T. JACOB. 2000. Suppression of metallothionein gene expression in a rat hepatoma because of promoter–specific DNA methylation. Journal of Biological Chemistry 275:539–547.

GHOSHAL, K., J. DATTA, S. MAJUMDER, S. BAI, X. DONG, M. PARTHUN, AND S. T. JACOB. 2002. Inhibitors of histone deacetylase and DNA methyltransferase synergistically activate the methylated metallothionein I promoter by activating the transcription factor MTF–1 and forming an open chromatin structure. Molecular and Cellular Biology 2:8302–8319.

GIEDROC, D. P., X. CHEN, AND J. L. APUY. 2001. Metal response element (MRE)-binding transcription factor-1 (MTF-1): structure, function, and regulation. Antioxidants and Redox Signaling 3:577–596.

GOWHER, H., O. LEISMANN, AND A. JELTSCH. 2000. DNA of Drosophila melanogaster contains 5-methylcytosine. The European Molecular Biology Organization Journal 19:6918–6923.

GUILLETTE, L. J., AND M. P. GUNDERSON. 2001. Alterations in development of reproductive and endocrine systems of wildlife populations exposed to endocrine–disrupting contaminants. Reproduction 122:857–864.

HEUCHEL, R., F. RADTKE, O. GEORGIEV, G. STARK, M. AGUET, AND W. SCHAFFNER. 1994. The transcription factor MTF-1 is essential for basal and heavy metal-induced metallothionein gene expression. The European Molecular Biology Organization Journal 13:2870–2875.

HOOK, S. E., AND N. S. FISHER. 2001. Reproductive toxicity of metals in calanoid copepods. Marine Biology 138:1131–1140.

JACOB, S. T., S. MAJUMDER, AND K. GHOSHAL. 2002. Suppression of metallothionein–I/II expression and its probable molecular mechanisms. Environmental Health Perspectives 110:827–830.

KAFRI, T., M. ARIEL, M. BRANDEIS, R. SHEMER, L. URVEN, J. MCCARREY, H. CEDAR, AND A. RAZIN. 1992. Developmental pattern of gene–specific DNA methylation in the mouse embryo and germ line. Genes and Development 6:705–714.

KAMINKER, P. 2007. Epigenética, ciencia de la adaptación biológica heredable. Archivos Argentinos de Pediatría 105:529–531.

LEE, Y .W., C. B. KLEIN, B. KARGACIN, K. SALNIKOW, J. KITAHARA, K. DOWJAT, A ZHITKOVICH, N. T. CHRISTIE, AND M. COSTA. 1995. Carcinogenic nickel silences gene expression by chromatin condensation and DNA methylation: a new model for epigenetic carcinogens. Molecular and Cellular Biology 15:2547–2557.

LEE, Y. W., L. BRODAY, AND M. COSTA. 1998. Effects of nickel on DNA methyltransferase activity and genomic DNA methylation levels. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 415:213–218.

LEVENSON, J. M., AND J. D. SWEATT. 2005. Epigenetic mechanisms in memory formation. Nature Reviews Neuroscience 6:108–118.

MACLEOD, D., V. CLARK, AND A. BIRD. 1999. Absence of genomewide changes in DNA methylation during development of the zebrafish (Danio rerio). Nature Genetics 23:139–140.

MAJUMDER, S., K. GHOSHAL, R. M. GRONOSTAJSKI, AND S. T. JACOB. 2001. Downregulation of constitutive and heavy metal–induced metallothionein–I expression by nuclear factor I. Gene Expression 9:203–215.

MATZUK, M. M., AND D. J. LAMB. 2002. Genetic dissection of mammalian fertility pathways. Nature Cell Biology and Nature Medicine 4:S41–S49.

MAUR, A., T. BELSER, G. ELGAR, O. GEORGIEV, AND W. SCHAFFNER. 1999. Characterization of the transcription factor MTF–1 from the Japanese pufferfish (Fugu rubripes) reveals evolutionary conservation of heavy metal stress response. Biological Chemistry 380:175–185.

MESA-CORNEJO, V. M., P. BARROS-NÚÑEZ, AND C. MEDINA-LOZANO. 2006. Metilación del ADN: marcador diagnóstico y pronóstico de cáncer. Gaceta Médica de México 142:81–82.

MISRA, R. R., G. T. SMITH, AND M. P. WAALKES. 1998. Evaluation of the direct genotoxic potential of cadmium in four different rodent cell lines. Toxicology 126:103–114.

MONK, M., M. BOUBELIK, AND S. LEHNERT. 1987. Temporal and regional changes in DNA methylation in the embryonic, extraembryonic and germ cell lineages during mouse embryo development. Development 99:371–382.

NAKAYAMA, M., M. L. GONZALGO, S. YEGNASUBRAMANIAN, X. LIN, A .M. DE MARZO, AND W. G. NELSON. 2004. GSTP1 CpG island hypermethylation as a molecular biomarker for prostate cancer. Journal of Cellular Biochemistry 91:540–552.

NOHARA, K., Y. TATEISHI, T. SUZUKI, K. OKAMURA, H. MURAI, S. TAKUMI, F. MAEKAWA, M. NISHIMURA, M. KOBORI, AND T. ITO. 2012. Late-onset increases in oxidative stress and other tumorigenic activities and tumors with a Ha-ras mutation in the liver of adult male C3H mice gestationally exposed to arsenic. Toxicological Sciences 129:293–304.

NORDBERG, G. F., R. A. GOYER, AND T. W. CLARKSON. 1985. Impact of effects of acid precipitation on toxicity of metals. Environmental Health Perspectives 63:169–180.

OKANO, M., S. XIE, AND E. LI. 1998. Cloning and characterization of a family of novel mammalian DNA (cytosine–5) methyltransferases. Nature Genetics 19:219–220.

OKANO, M., D. W. BELL, D. A. HABER, AND E. LI. 1999. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–257.

PAIS, I., AND J. B. JONES JR. 1997. The handbook of trace elements. CRC Press. Boca Raton, EE. UU.

PILSNER, R. J., A. L. LAZARUS, D. H. NAM, R. J. LETCHER, C. SONNE, R. DIETZ, AND N. BASU. 2010. Mercuryâ€associated DNA hypomethylation in polar bear brains via the LUminometric Methylation Assay: a sensitive method to study epigenetics in wildlife. Molecular Ecology 19:307–314.

PULIDO, M. D., AND A. R. PARRISH. 2003. Metal–induced apoptosis: mechanisms. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 533:227–241.

RADTKE, F., R. HEUCHEL, O. GEORGIEV, M. HERGERSBERG, M. GARIGLIO, Z. DEMBIC, AND W. SCHAFFNER. 1993. Cloned transcription factor MTF–1 activates the mouse metallothionein I promoter. The European Molecular Biology Organization Journal 12:1355–1362.

REIG, G., AND M. L. CONCHA. 2012. Impronta Genómica y Desarrollo Embrionario. International Journal of Morphology 30:1453–1457.

REIK, W., W. DEAN, AND J. WALTER. 2001. Epigenetic reprogramming in mammalian development. Science 293:1089–1093.

REIK, W. 2007. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 447:425–432.

SALNIKOW, K., AND A. ZHITKOVICH. 2008. Genetic and epigenetic mechanisms in metal carcinogenesis and cocarcinogenesis: nickel, arsenic, and chromium. Chemical Research in Toxicology 21:28–44.

SHORTER, K. R., J. P. CROSSLAND, D. WEBB, G. SZALAI, M. R. FELDER, AND P. B. VRANA. 2012. Peromyscus as a mammalian epigenetic model. Genetics Research International 2012(179159):1–11.

SHUTOH, Y., M. TAKEDA, R. OHTSUKA, A. HAISHIMA, S. YAMAGUCHI, H. FUJIE, Y. KOMATSU, K. MAITA, AND T. HARADA. 2009. Low dose effects of dichlorodiphenyltrichloroethane (DDT) on gene transcription and DNA methylation in the hypothalamus of young male rats: implication of hormesis-like effects. The Journal of Toxicological Sciences 34: 469–482.

SILBERGELD, E. K. 2003. Facilitative mechanisms of lead as a carcinogen. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 533:121–133.

STEARNS, D. M., S. M. SILVEIRA, K. K. WOLF, AND A. M. LUKE. 2002. Chromium (III) tris (picolinate) is mutagenic at the hypoxanthine (guanine) phosphoribosyltransferase locus in Chinese hamster ovary cells. Mutation Research/Genetic Toxicology and Environmental Mutagenesis 513:135–142.

TAKIGUCHI, M., W. E. ACHANZAR, W. QU, G. LI, AND M. P. WAALKES. 2003. Effects of cadmium on DNA–(Cytosine–5) methyltransferase activity and DNA methylation status during cadmium–induced cellular transformation. Experimental Cell Research 286:355–365.

TEMPLETON, D. M., F. ARIESE, R. CORNELIS, R., L. G. DANIELSSON, H. MUNTAU, H. P. VAN LEEUWEN, AND R. LOBINSKI. 2000. Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches (IUPAC Recommendations 2000). Pure and Applied Chemistry 72:1453–1470.

THOMAS, D. J., J. LI, S. B. WATERS, W. XING, B. M. ADAIR, Z. DROBNA, V. DEVESA, AND M. STYBLO. 2007. Arsenic (+ 3 oxidation state) methyltransferase and the methylation of arsenicals. Experimental Biology and Medicine 232:3–13.

TKESHELASHVILI, L. K., T. MCBRIDE, K. SPENCE, AND L. A. LOEB. 1991. Mutation spectrum of copper-induced DNA damage. Journal of Biological Chemistry 266:6401–6406.

TSANG, V., R. C. FRY, M. D. NICULESCU, J. E. RAGER, J. SAUNDERS, D. S. PAUL, S. H. ZEISEL, M. P. WAALKES, M. STÃBLO, AND D. DROBNÁ. 2012. The epigenetic effects of a high prenatal folate intake in male mouse fetuses exposed in utero to arsenic. Toxicology and Applied Pharmacology 264:439–450.

VARRIALE, A. 2014. DNA methylation, epigenetics, and evolution in vertebrates: facts and challenges. International Journal of Evolutionary Biology 2014(475981):1–7.

WAALKES, M. P., B. A. DIWAN, S. REHM, J. M. WARD, M. MOUSSA, M. G. CHERIAN, AND R. A. GOYER. 1996. Down–regulation of metallothionein expression in human and murine hepatocellular tumors: association with the tumor–necrotizing and antineoplastic effects of cadmium in mice. Journal of Pharmacology and Experimental Therapeutics 277:1026–1033.

WAALKES, M. P. 2003. Cadmium carcinogenesis. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis 533:107–120.

WANG, B., Y. LI, C. SHAO, Y. TAN, AND L. CAI. 2012a. Cadmium and its epigenetic effects. Current medicinal chemistry 19:2611–2620.

WANG, B., Y. LI, Y. TAN, X. MIAO, X.D. LIU, C.X. SHAO, H. YANG, S. TURDI, L. J. MA, J. REN, AND L. CAI. 2012b. Low-dose Cd induces hepatic gene hypermethylation, along with the persistent reduction of cell death and increase of cell proliferation in rats and mice. PloS One 7:e33853.

WIMMER, U., Y. WANG, O. GEORGIEV, AND W. SCHAFFNER. 2005. Two major branches of anti–cadmium defense in the mouse: MTF–1/metallothioneins and glutathione. Nucleic Acids Research 33:5715–5727.

ZHANG, B., D. EGLI, O. GEORGIEV, AND W. SCHAFFNER. 2001. The Drosophila homolog of mammalian zinc finger factor MTF–1 activates transcription in response to heavy metals. Molecular and Cellular Biology 21:4505–4514.

Published

2014-12-22

Issue

Section

Reviews