Human footprint effects on the distribution of the spotted lowland paca (Cuniculus paca)

Authors

  • Monserrat Sánchez-Reyes Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México
  • Xavier Chiappa-Carrara Departamento de Sistemas y Procesos Naturales, Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México
  • Ella Vázquez-Domínguez Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México
  • Carlos Yáñez-Arenas Laboratorio de Ecología Geográfica, Unidad de Conservación de la Biodiversidad, Parque Científico y Tecnológico de Yucatán, Unidad Académica Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México
  • Manuel Falconi Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México
  • Luis Osorio-Olvera Departamento de Ecología de la Biodiversidad, Instituto de Ecología, Universidad Nacional Autónoma de México
  • Rusby G. Contreras-Díaz Departamento de Sistemas y Procesos Naturales, Escuela Nacional de Estudios Superiores Unidad Mérida, Universidad Nacional Autónoma de México

Keywords:

cological niche models, species distribution models, spotted paca, human impact.

Abstract

Human activity has caused the decrease of about 20 % of the planet's vertebrate diversity and 25 % in their abundance. Many large and medium-sized herbivore mammals have gone extinct locally, unleashing a cascade of ecosystem changes. The spotted paca (Cuniculus paca) is impacted by hunting and anthropogenic habitat fragmentation and loss. To protect spotted pacas, it is essential to estimate anthropogenic effects on their geographic distribution. Through the use of primary biodiversity data, bioclimatic data, land-cover data, and a human footprint index, we modeled the distribution of C. paca. From 105 candidate models, only one model met our selection criteria. The variables with the highest contribution were the human footprint and annual precipitation. According to the model's performance curves, the spotted paca has low to medium tolerance of anthropogenic pressure. Cuniculus paca tolerates low to medium anthropogenic disturbance, which we hypothesize is related to reduced predator pressure in habitats modified by humans. Accounting for the costs and benefits of anthropogenic disturbance is essential to paca conservation.

Author Biography

Carlos Yáñez-Arenas, Laboratorio de Ecología Geográfica, Unidad de Conservación de la Biodiversidad, Parque Científico y Tecnológico de Yucatán, Unidad Académica Sisal, Facultad de Ciencias, Universidad Nacional Autónoma de México

Ecología y distribución de mamíferos, modelado de nicho, modelado de ocupación, conservación.

References

ABBAS, S., J. E. NICHOL, AND M. S. WONG. 2021. Trends in vegetation productivity related to climate change in China’s Pearl River Delta. Plos One 16:e0245467.

ALKISHE, A., ET AL. 2022. Ecological niche and potential geographic distributions of Dermacentor marginatus and Dermacentor reticulatus (Acari: Ixodidae) under current and future climate conditions. Web Ecology 22:33–45.

ANDERSON, R. P., AND A. RAZA. 2010. The effect of the extent of the study region on GIS models of species geographic distributions and estimates of niche evolution: preliminary tests with montane rodents (genus Nephelomys) in Venezuela. Journal of Biogeography 37:1378–1393.

BECK-KING, H., O. V. HELVERSEN, AND R. BECK-KING. 1999. Home Range, Population Density, and Food Resources of Agouti paca (Rodentia: Agoutidae) in Costa Rica: A Study Using Alternative Methods 1. Biotropica 31:675–685.

BURNHAM, K. P., AND D. R. ANDERSON. 2002. Model selection and multimodel inference: A practical information-theoretic approach. Springer. New York, U.S.A.

CAMARGO-SANABRIA, A. A., ET AL. 2015. Experimental defaunation of terrestrial mammalian herbivores alters tropical rainforest understory diversity. Proceedings of the Royal Society B: Biological Sciences 282:20142580.

CARTAYA, S., C. ANCHUNDIA, AND R. MANTUANO. 2016. Distribución geográfica potencial de la especie Cuniculus paca en el occidente de Ecuador. La Granja: Revista de Ciencias de la Vida 24:134–149.

COBOS, M. E., ET AL. 2018. Sample data and training modules for cleaning biodiversity information. Biodiversity Informatics 13:49–50.

COBOS, M. E., ET AL. 2019. kuenm: an R package for detailed development of ecological niche models using Maxent. PeerJ 7:e6281.

CONTRERAS-DÍAZ, R. G., ET AL. 2022. On the relationship between environmental suitability and habitat use for three neotropical mammals. Journal of Mammalogy 103:425–439.

D’ELIA, J., ET AL. 2015. Activity-specific ecological niche models for planning reintroductions of California condors (Gymnogyps californianus). Biological Conservation 184:90–99.

DÍAZ, S., ET AL. 2019. Pervasive human-driven decline of life on Earth points to the need for transformative change. Science 366:eaax3100.

DI MARCO, M., ET AL. 2018. Changes in human footprint drive changes in species extinction risk. Nature Communications 9:4621.

DIRZO, R., ET AL. 2014. Defaunation in the anthropocene. Science 345:401–406.

DUBOST G., AND O. HENRY. 2017. Seasonal reproduction in neotropical rainforest mammals. Zoological Studies 56:2.

EHLERS, E., AND T. KRAFFT. 2006. Managing global change Pp. 5-12, in Earth System Science in the Anthropocene (Ehlers, E., and T. Krafft, eds.). Springer. Berlin, Heidelberg.

EL BIZRI, H. R., ET AL. 2018. Breeding seasonality in the lowland paca (Cuniculus paca) in Amazonia: interactions with rainfall, fruiting, and sustainable hunting. Journal of Mammalogy 99:1101–1111.

EMMONS, L. 2016. Cuniculus paca. The IUCN Red List of Threatened Species 2016:e.T699A22197347.

ERB, K. H., ET AL. 2018. Unexpectedly large impact of forest management and grazing on global vegetation biomass. Nature 553:73–76.

ESCOBAR, L. E., ET AL. 2014. Potential for spread of the white-nose fungus (Pseudogymnoascus destructans) in the Americas: Use of Maxent and NicheA to assure strict model transference. Geospatial Health 9:221–229.

ESPINDOLA, S., J. L. PARRA, AND E. VÁZQUEZ-DOMÍNGUEZ. 2019. Fundamental niche unfilling and potential invasion risk of the slider turtle Trachemys scripta. PeerJ 7:e7923.

FALCONI, M., L. OSORIO-OLVERA, AND R. G. CONTRERAS-DÍAZ. 2021. Distribución de especies. Un punto de vista teórico. Revista de Modelamiento Matemático de Sistemas Biológicos 1:16–24.

FELDMEIER, S., ET AL. 2020. Shifting aspect or elevation? The climate change response of ectotherms in a complex mountain topography. Diversity and Distributions 26:1483–1495.

FICK, S. E., AND R. J. HIJMANS. 2017. WorldClim 2: new 1â€km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37:4302–4315.

FIGUEROA-DE LEÓN, A. 2016. Dinámica de ocupación de cavidades y uso de hábitat del tepezcuintle (Cuniculus paca) en la Selva Lacandona, Chiapas, México. Ph.D. Dissertation. El Colegio de la Frontera Sur. San Cristóbal de Las Casas, Chiapas, México.

FRANKLIN, J. 2010. Mapping species distributions: spatial inference and prediction (Ecology, biodiversity and conservation). Cambridge University Press. New York, U.S.A.

GALLINA, S. 1981. Contribución al conocimiento de los hábitos alimenticios del tepezcuintle (Agouti paca Lin.) en Lacanjá–Chansayab, Chiapas. Publicación del Instituto de Ecología de México 6:55–67.

GBIF.ORG. 2021. GBIF Occurrence Download. https://doi.org/10.15468/dl.5u4dvg. Accessed on 4 February 2021.

GUTIERREZ, S. M., ET AL. 2017. Ranging behavior and habitat selection of pacas (Cuniculus paca) in central Belize. Journal of Mammalogy 98:542–550.

HANTAK, M. M., ET AL. 2021. Mammalian body size is determined by interactions between climate, urbanization, and ecological traits. Communications Biology 4:972.

HILL, S. L. L., ET AL. 2018. Worldwide impacts of past and projected future land-use change on local species richness and the Biodiversity Intactness Index. BioRxiv 311787.

IUCN. 2022. The IUCN Red List of Threatened Species. Version 2022-1. https://www.iucnredlist.org. Accessed on 8 July 2022.

JARVIE, S., AND J. C. SVENNING. 2018. Using species distribution modelling to determine opportunities for trophic rewilding under future scenarios of climate change. Philosophical Transactions of the Royal Society B 373:20170446.

JAX, E., ET AL. 2015. Habitat use and relative abundance of the spotted paca Cuniculus paca (Linnaeus, 1766) (Rodentia: Cuniculidae) and the red-rumped agouti Dasyprocta leporina (Linnaeus, 1758) (Rodentia: Dasyproctidae) in Guatopo National Park, Venezuela. Journal of Threatened Taxa 7:6739–6749.

MARTÍNEZ-CECEÑAS, Y., ET AL. 2018. Ecología alimentaria del tepezcuintle (Cuniculus paca) en áreas conservadas y transformadas de la Selva Lacandona, Chiapas, México.. Revista Mexicana de Biodiversidad 89:507–515.

MARTÍNEZ-RAMOS, M., ET AL. 2016. Anthropogenic disturbances jeopardize biodiversity conservation within tropical rainforest reserves. Proceedings of the National Academy of Sciences 113:5323–5328.

MCCARTHY, K. P., ET AL. 2012. Predicting species distributions from samples collected along roadsides. Conservation Biology 26:68–77.

MCNAUGHTON, S. 1975. r-and K-selection in Typha. The American Naturalist, 109:251–261.

MICHALSKI, F., AND D. NORRIS. 2011. Activity pattern of Cuniculus paca (Rodentia: Cuniculidae) in relation to lunar illumination and other abiotic variables in the southern Brazilian Amazon. Zoologia 28:701–708.

MONTES, R. 2005. El tepezcuintle, un recurso biológico importante. Biodiversitas 63:6–10.

NUÑEZ-PENICHET, C., ET AL. 2021. Geographic potential of the world’s largest hornet, Vespa mandarinia Smith (Hymenoptera: Vespidae), worldwide and particularly in North America. PeerJ 9:e10690.

O’DONNELL, M. S., AND D. A. IGNIZIO. 2012. Bioclimatic predictors for supporting ecological applications in the conterminous United States. U.S. Geological Survey Data Series 691:1–10.

OSORIO-OLVERA, L. A., M. FALCONI, AND J. SOBERÓN. 2016. Sobre la relación entre idoneidad del hábitat y la abundancia poblacional bajo diferentes escenarios de dispersión. Revista Mexicana de Biodiversidad 87:1080–1088.

OSORIO-OLVERA, L., ET AL. 2020. ntbox: an R package with graphical user interface for modelling and evaluating multidimensional ecological niches. Methods in Ecology and Evolution 11:1199–1206.

PADILLA-GÓMEZ, E., ET AL. 2019. Noteworthy records of jaguar (Panthera onca), tayra (Eira barbara), and paca (Cuniculus paca) from southern Mexico. Notas sobre Mamíferos Sudamericanos 1.

PARSONS, A. W., ET AL. 2018. Mammal communities are larger and more diverse in moderately developed areas. eLife 7:e38012.

PÉREZ, E. M. 1992. Agouti paca. Mammalian Species 404:1–7.

PHILLIPS, S. J., ET AL. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190:231–259.

PULLIAM, H. R. 2000. On the relationship between niche and distribution. Ecology Letters 3:349–361.

R CORE DEVELOPMENT TEAM. 2019. R: A language and environment for statistical computing. Vienna, Austria. https://www.R-project.org/.

ROWE, K. C., ET AL. 2015. Spatially heterogeneous impact of climate change on small mammals of montane California. Proceedings of the Royal Society B: Biological Sciences 282:20141857.

SOBERÓN, J. 2010. Niche and area of distribution modeling: a population ecology perspective. Ecography 33:159–167.

SOBERÓN J., AND A. T. PETERSON. 2005. Interpretation of models of fundamental ecological niches and species’ distributional areas. Biodiversity Informatics 2:1–10.

SPECIESLINK. 2021. Red Species Link. Reference Center for Environmental Information (CRIA), Research Support Foundation of the State of São Paulo (FAPESP). http://www.splink.org.br. Accessed on 10 February 2021.

SHIMAMOTO C. Y., ET AL. 2018. Restoration of ecosystem services in tropical forests: A global meta-analysis. Plos One 13:e0208523.

TILMAN, D. 1999. The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80:1455–1474.

TUANMU, M. N., AND W. JETZ. 2014. A global 1â€km consensus landâ€cover product for biodiversity and ecosystem modelling. Global Ecology and Biogeography 23:1031–1045.

TUCKER, M. A., ET AL. 2018. Moving in the Anthropocene: Global reductions in terrestrial mammalian movements. Science 359:466–469.

VENTER, O., ET AL. 2016. Global terrestrial Human Footprint maps for 1993 and 2009. Scientific Data 3:1–10.

WARREN, D. L., AND S. N SEIFERT. 2011. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecological Applications 21:335–342.

ZUCARATTO, R., R. CARRARA, AND B. K. SIQUIERA FRANCO. 2010. Dieta da paca (Cuniculus paca) usando métodos indiretos numa área de cultura agrícola na Floresta Atlântica brasileira. Biotemas 23:235–239.

Published

2023-01-27

Issue

Section

Special Contribution