Effect of anthropogenic noise on the echolocation pulses of the bats Molossus sinaloae and Mormoops megalophylla

Authors

  • Ana Cristel Lara-Nuñez Universidad Autónoma del Estado de Morelos
  • José Antonio Guerrero Universidad Autónoma del Estado de Morelos
  • Areli Rizo-Aguilar Universidad Autónoma del Estado de Morelos

Keywords:

Acoustic masking, Lombard effect, noise pollution, pulses variation.

Abstract

Anthropogenic noise interferes with the acoustic signals of various wildlife species. For bats that use echolocation, noise can mask the information received in the echo. The effect of anthropogenic noise on the time and frequency components of echolocation pulses emitted by the aerial insectivorous bats Molossus sinaloae and Mormoops megalophylla in urban and natural habitats were evaluated. We hypothesized that the frequency components of pulses would increase in response to masking, while time components would not change significantly. To this end, acoustic recordings of both species were made in the two types of habitats using ultrasonic detectors; simultaneously, the intensity of the ambient noise was measured. Frequency (kHz) and time (ms) were analyzed for each echolocation pulse using the BatSound 4.2 software. Consistent with our hypothesis, the results showed that under background noise of 75 dB in an urban environment, M. sinaloae increased the low and high frequencies of its echolocation pulses by 5.8 kHz on average. For M. megalophylla, no increase in pulse frequencies was observed. Contrary to our expectation, the time components of pulses for M. sinaloae were modified, being of shorter duration in urban sites. Increasing the maximum amplitude-frequency by M. sinaloae may be a response to the Lombard effect, i. e., the increase in vocal amplitude in response to increased background noise. It is important to carry out studies focused on understanding the modification of echolocation pulses, mainly for species living in urban environments.

Author Biographies

Ana Cristel Lara-Nuñez, Universidad Autónoma del Estado de Morelos

Facultad de Ciencias Biológicas

José Antonio Guerrero, Universidad Autónoma del Estado de Morelos

Profesor Investigador de Tiempo CompletoFacultad de Ciencias Biológicas

Areli Rizo-Aguilar, Universidad Autónoma del Estado de Morelos

Profesor Investigador de Tiempo CompletoFacultad de Ciencias Químicas e Ingeniería

References

BARBER, J. R., K. R. CROOKS, AND K. M. FRISTRUP. 2010. The costs of chronic noise exposure for terrestrial organisms. Trends in Ecology & Evolution 25:180-189.

BRIONES-SALAS, M., M. PERALTA-PÉREZ, AND M. GARCÍA-LUIS. 2013. Acoustic characterization of new species of bats for the State of Oaxaca, Mexico. Therya 4:15-32.

BRUMM, H. 2004. The impact of environmental noise on song amplitude in a territorial bird. Journal of Animal Ecology 73:434-440.

BRUMM, H. 2010. Anthropogenic noise: implications for conservation. Pp. 89-93, in Encyclopedia of animal behavior (Breed, M. D., and J. More, eds.). Academic Press. Oxford, U.K.

BRUMM, H., AND S. A. ZOLLINGER. 2017. Vocal plasticity in a reptile. Proceedings of The Royal. Society 284:1-6.

BUNKLEY, J. P., AND J. R. BARBER. 2015. Noise reduces foraging efficiency in pallid bats (Antrozous pallidus). Ethology 121:1-6.

BUNKLEY, J. P., ET AL. 2015. Anthropogenic noise alters bat activity levels and echolocation calls. Global Ecology and Conservation 3:62-71.

CHAVERRI, G., AND O. E. QUIRÓS. 2017. Variation in echolocation call frequencies in two species of free-tailed bats according to a temperature and humidity. The Journal of the Acoustical Society of America 142:146-150.

CURRIE. S. E., ET AL. 2020. Echolocation at high intensity imposes metabolic costs of flying bats. Nature Ecology and Evolution 4:1174-1177.

DORADO, O., ET AL. 2005. Programa de conservación y manejo de la Reserva de la Biosfera Sierra de Huautla. Comisión nacional de Áreas Naturales Protegidas. Ciudad de México, México.

DORADO, O., ET AL. 2012. Árboles de Cuernavaca nativos y exóticos. Cuernavaca, Morelos, México. Trópico Seco Ediciones, Universidad Autónoma del Estado de Morelos. Cuernavaca, México.

FENTON, M. B., M. D. SKOWRONSKI, L. P. MCGUIRE, AND P. A. FAURE. 2011. Variation in the use of harmonics in the calls of laryngeally echolocating bats. Acta Chiropterologica 13:169-178.

FRANCIS, C. D., AND J. R. BARBER. 2013. A framework for understanding noise impacts on wildlife: an urgent conservation priority. Frontiers in Ecology and the Environment 11:305-313.

GILLAM, E. H., ET AL. 2009. Bats aloft: variability in echolocation call structure at high altitudes. Behavior Ecology Sociobiology 64:69-79.

GILLAM, E. H., AND B. K. MONTERO. 2016. Influence of call structure on the jamming avoidance response of echolocating bats. Journal of Mammalogy 97:14-22.

GRIFFITHS, T. A. 1978. Modification of M. cricothyroideus and the larynx in the Mormoopidae, with reference to amplification of high-frequency pulses. Journal of Mammalogy 59:724-730.

GRILLIOT, M. E., S. C. BURNETT, AND M. T. MENDOCA. 2014. Sex and season differences in the echolocation pulses of big brown bats (Eptesicus fuscus) and their relation to mating activity. Acta Chiropterologica 16:379-386.

HAGE, S. R., ET AL. 2013a. Ambient noise induces independent shifts in call frequency and amplitude within the Lombard effect in echolocating bats. Proceedings of the National Academy of Sciences 110:4063-4068.

HAGE, S. R., AND W. METZNER. 2013b. Potential effects of anthropogenic noise on echolocation behavior in horseshoe bats. Communicative & Integrative Biology 6:1-3.

HAMMAR, Ø., D. A. T. HARPER, AND P. D. RYAN. 2001. PAST: paleontological statistics software package for education and data analysis. Paleontologia Electronics 4:9.

INSTITUTO MEXICANO DE TECNOLOGÍA DEL AGUA (IMTA). 2014. Programa de medidas preventivas de mitigación de la sequía. SEMARNAT. Cuernavaca, México.

INSTITUTO NACIONAL DE ESTADÍSTICA Y GEOGRAFÍA (INEGI). 2009. Prontuario de información geográfica municipal de los Estados Unidos Mexicanos. Cuernavaca, Morelos, México: INEGI.

INSTITUTO NACIONAL DE ESTADÍSTICA Y GEOGRAFÍA (INEGI). 2015. Panorama sociodemográfico de Morelos. http://cuentame.inegi.org.mx. Consulted 3 june 2017.

JIANG, T., H. WU, AND J. FENG. 2015. Patterns and causes of geographic variation in bat echolocation pulses. Integrative Zoology 10:241-256.

JONES, G., AND E. C. TEELING. 2006. The evolution of echolocation bats. Trends in Ecology & Evolution 21:149-156.

JUNG, K., E. K. V. KALKO, AND O. VON HELVERSEN. 2006. Echolocation calls in Central American emballonurid bats: signal design and call frequency alternation. Journal of Zoology 272:125-137.

JUNG, K., J. MOLINARI., AND E. K. V. KALKO. 2014. Driving factors for the evolution of species-specific echolocation call design in new world free-tailed bats (Molossidae). Plos One 9:1-9.

KIGHT, C. R., AND J. P. SWADDLE. 2011. How and why environmental noise impacts animals: an integrative, mechanistic review. Ecology Letters 14:1052-1061.

KINGSTON, T., G. JONES, Z. AKBAR., AND T. H. KUNZ. 2003. Alternation of echolocation calls in 5 species of aerial-feeding insectivorous bats from Malaysia. Journal of Mammalogy 84:205-215.

KRAKER-CASTAÑEDA, C. A., SANTOS-MORENO, C. LORENZO, AND G. M. C. MACSWINEY. 2019. Effect of intrinsic and extrinsic factors on the variability of echolocation pulses of Myotis nigricans (Schinz, 1821) (Chiroptera: Vespertilionidae). Bioacoustics 28:366-380.

KUNZ, T.H., AND D. S. REYNOLDS. 2003. Bats colonies in buildings. Pp. 91-102, in Monitoring Trends in bat Populations of the United States and Territories: Problems and Prospects (O´Shea, T. J., and M. A. Bogan, eds.). Springfield, U.S.A.

LUO, J., H. R. GOERLITZ, AND L. WIEGREBE. 2015a. Linking the sender to the receiver: vocal adjustments by bats to maintain signal detection in noise. Scientific Reports 5:1-11.

LUO, J., B. M. SIEMERS, AND K. KOSELJ. 2015b. How anthropogenic noise affects foraging. Global Change Biology 21:3278-3289.

LUO, J., A. LINGNER, U. FIRZLAFF, AND L. WIEGREBE. 2017. The Lombard effect emerges early in young bats: implications for the development of audio-vocal integration. Journal of Experimental Biology 220:1032-1037.

MAIR, P., AND R. R. WILCOX. 2020. Robust statistical methods in R using the WRS2 Package. Behavior Research Methods 52:464-488.

MCKINNEY, M. L. 2002. Urbanization, biodiversity and conservation. BioScience 52:883-890.

NAGUIB, M. 2013. Living in a noisy world: indirect effects of noise on animal communication. Behaviour 150:1069-1084.

NEMETH, E., ET AL. 2013. Bird song and anthropogenic noise: vocal constraints may explain why birds sing higher-frequency songs in cities. Proceeding of the Royal Society B 280:1-7.

NEUWEILER, G. 2000. Echolocation. Pp. 140-206, in The biology of bats (Neuweiler, G., ed). Oxford University Press, New York, U.S.A.

OROZCO-LUGO, L., A. GUILLÉN-SERVET, D. VALENZUELA-GALVÁN, AND H. T. ARITA. 2013. Descripción de los pulsos de ecolocalización de once especies de murciélagos insectívoros aéreos de una selva baja caducifolia en Morelos, México. Therya 4:33-46.

R CORE TEAM. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/.

RÍOS-CHELÉN, A. A., G. LEE, AND G. L. PATRICELLI. 2015. Anthropogenic noise is associated with changes in acoustic but not visual signals in red-winged blackbirds. Behavioral Ecology and Sociobiology 69:1139-1151.

RODRÍGUEZ-AGUILAR, G., C. L. OROZCO-LUGO, I. VLEUT, AND L. B. VÁZQUEZ. 2017. Influence of urbanization on the occurrence and activity of aerial insectivorous bats. Urban Ecosystems 29:477-488.

RUSSO, D., AND L. ANCILLOTTO. 2015. Sensitivity of bats to urbanization: A review. Mammalian Biology 80:205-212.

RUSSO, D., L. ANCILLOTTO, AND G. JONES. 2018. Bats are still not birds in the digital era: echolocation call variation and why it matters for bat species identification. Canadian Journal of Zoology 96:63-78.

RYDELL, J., H. T. ARITA, M. SANTOS, AND J. GRANADOS. 2002. Acoustic identification of insectivorous bats (order Chiroptera) of Yucatan, Mexico. Journal of Zoology 257:27-36.

SCHAUB, A., J. OSTWALD, AND B. SIEMERS. 2011. Foraging bats avoid noise. The Journal of Experimental Biology 211:3174-3180.

SCHNITZLER, H. U, AND E. K. V. KALKO. 2001. Echolocation by insect-eating bats. BioScience 51:557-569.

SHANNON, G., ET AL. 2015. A synthesis of two decades of research documenting the effects of noise on wildlife. Biological Reviews 91:982-1005.

SHEN, J. X., AND Z. M. XU. 2016. The Lombard effect in male ultrasonic frogs: regulating antiphonal signal frequency and amplitude in noise. Scientific Reports 6:1-8.

SIEMERS, B. M., AND A. SCHAUB. 2011. Hunting at the highway: traffic noise reduces foraging efficiency in acoustic predators. Proceedings of the Royal Society B 278:1646-1652.

SLABBEKOORN, H., AND M. PEET. 2003. Birds sing at a higher pitch in urban noise. Nature 424: 267.

TRESSLER, J., AND M. S. SMOTHERMAN. 2009. Context-dependent effects of noise on echolocation pulse characteristics in free-tailed bats. Journal of Comparative Physiology A 195:923-934.

TYACK, P. L., AND V. M Janik. 2013. Effects of noise on acoustic signal production in marine mammals. Pp. 251-271, in Animal communication and noise. Animal signals and communication (Brumm, H., eds.). Springer. Berlin, Alemania.

VARELA-BOYDO, F., L. ÁVILA-TORRESAGATÓN, A. RIZO-AGUILAR, AND J. A. GUERRERO. 2019. Variation in echolocation calls produced by Myotis velifer (Chiroptera: Vespertiliondae) during postnatal development. Therya 10:55-58.

VENABLES, W. N., AND B. D. RIPLEY. 2002. Modern applied statistics with S. Fourth Edition. Springer. New York, U.S.A.

VOIGT-HEUCKE, S. L., M. TABORSKY, AND D. K. N. DECHMANN. 2010. A dual function of echolocation calls to identify familiar and unfamiliar individuals. Animal Behaviour 80:59-67.

WILCOX, R. R. 2012. Introduction to robust estimation and hypothesis testing. Academic. San Diego, U.S.A.

ZOLLINGER, S. A., AND H. BRUMM. 2011. The Lombard effect. Current Biology 21:614-615.

Published

2022-05-29

Issue

Section

Articles