Coexistence of three mephitids in Tehuacán-Cuicatlán Biosphere Reserve, México

Authors

  • Verónica Farías-González Universidad Nacional Autónoma de México (UNAM). Facultad de Estudios Superiores Iztacala (FESI). http://orcid.org/0000-0002-2450-9245
  • Karen Haydee Hernández-Mendoza Universidad Nacional Autónoma de México (UNAM). Facultad de Estudios Superiores Iztacala (FESI).

Keywords:

Abundance, circadian activity, interspecific interactions, Mephitidae, photo-capture, skunk ecology, temporal segregation, tropical dry forest.

Abstract

Three species of mephitids coexist in the Tehuacán-Cuicatlán biosphere reserve (TCBR) and belong to a guild of mammalian carnivores that feed mainly on invertebrates. To infer the interspecific interactions that allow coexistence, we aimed to compare activity patterns and abundance of hog-nosed skunk (Conepatus leuconotus), hooded skunk (Mephitis macroura), and southern spotted skunk (Spilogale angustifrons) in a tropical dry forest with ecological integrity. We analyzed activity patterns and overlap, and compared the relative abundance index (IAR) of mephitids, between rainy and dry seasons and among species, and used 235 records for C. leuconotus, 39 for M. macroura, and 42 for S. angustifrons from 15 camera-trap stations in Mount Tepetroja, Puebla, from May 1st, 2013 to April 30th, 2020. The three mephitids were active mainly during the nocturnal period, although C. leuconotus showed a unimodal pattern with activity peak around midnight, M. macroura had a bimodal pattern with activity peaks during the crepuscular hours at sunset and sunrise, and S. angustifrons had a unimodal pattern with activity peak around 2:00 a.m. Mean activity of C. leuconotus (µ±SE = 00:42 ± 00:12 h) and M. macroura (01:02 ± 00:33 h) were similar (P = 0.32), and differed from the mean activity of S. angustifrons (01:49 ± 00:23 h, P = 0.02). C. leuconotus had the highest IAR (2.53 to 7.90) and differed from M. macroura (0.44 to 1.21) and S. angustifrons (0.83 to 0.96) in both seasons (P < 0.01). C. leuconotus and M. macroura showed higher IAR during the rainy season, in contrast with S. angustifrons that had no differences in IAR between seasons. The mephitids presented temporal segregation and variability in seasonal abundance as coexistence mechanisms. S. angustifrons showed the most restricted circadian activity and avoided the other two mephitids’ activity peaks. C. leuconotus was the most abundant species; thus, we inferred that the hog-nosed skunk determined the dynamics of intraguild interactions among mephitids in the tropical dry forest in the TCBR.Three species of mephitids coexist in the Tehuacán-Cuicatlán biosphere reserve (TCBR) and belong to a guild of mammalian carnivores that feed mainly on invertebrates. To infer the interspecific interactions that allow coexistence, we aimed to compare activity patterns and abundance of hog-nosed skunk (Conepatus leuconotus), hooded skunk (Mephitis macroura), and southern spotted skunk (Spilogale angustifrons) in a tropical dry forest with ecological integrity. We analyzed activity patterns and overlap, and compared the relative abundance index (IAR) of mephitids, between rainy and dry seasons and among species, and used 235 records for C. leuconotus, 39 for M. macroura, and 42 for S. angustifrons from 15 camera-trap stations in Mount Tepetroja, Puebla, from May 1st, 2013 to April 30th, 2020. The three mephitids were active mainly during the nocturnal period, although C. leuconotus showed a unimodal pattern with activity peak around midnight, M. macroura had a bimodal pattern with activity peaks during the crepuscular hours at sunset and sunrise, and S. angustifrons had a unimodal pattern with activity peak around 2:00 a.m. Mean activity of C. leuconotus (µ ± SE = 00:42 ± 00:12 h) and M. macroura (01:02 ± 00:33 h) were similar (P = 0.32), and differed from the mean activity of S. angustifrons (01:49 ± 00:23 h, P = 0.02). C. leuconotus had the highest IAR (2.53 to 7.90) and differed from M. macroura (0.44 to 1.21) and S. angustifrons (0.83 to 0.96) in both seasons (P < 0.01). C. leuconotus and M. macroura showed higher IAR during the rainy season, in contrast with S. angustifrons that had no differences in IAR between seasons. The mephitids presented temporal segregation and variability in seasonal abundance as coexistence mechanisms. S. angustifrons showed the most restricted circadian activity and avoided the other two mephitids’ activity peaks. C. leuconotus was the most abundant species; thus, we inferred that the hog-nosed skunk determined the dynamics of intraguild interactions among mephitids in the tropical dry forest in the TCBR.

Author Biography

Verónica Farías-González, Universidad Nacional Autónoma de México (UNAM). Facultad de Estudios Superiores Iztacala (FESI).

Profesora de Carrera Titular A de Tiempo CompletoLaboratorio de Recursos NaturalesUnidad de Biología, Tecnología y Prototipos (UBIPRO)Facultad de Estudios Superiores Iztacala UNAM

References

ARANDA-SÁNCHEZ, J. M. 2012. Manual para el rastreo de mamíferos silvestres de México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). Ciudad de México, México.

ARRIAGA, L., J. M. ESPINOZA, C. AGUILAR, E. MARTÍNEZ, L. GÓMEZ, Y E. LOA. 2000. RTP-121 Valle de Tehuacán-Cuicatlán. Pp. 472-475, in Regiones terrestres prioritarias de México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO), Ciudad de México, México.

ASCHOFF, J. 1966. Circadian activity pattern with two peaks. Ecology 47:657-662.

BERRUECOS-PÉREZ, J. 2015. Riqueza de mamíferos medianos y grandes del Ejido San José Axuxco, Puebla. Tesis de Licenciatura. Carrera de Biología. Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Tlalnepantla de Baz, Estado de México.

BRASHEAR, W. A., A. W. FERGUSON, N. N. NEGOVETICH, Y R. C. DOWLER. 2015. Spatial organization and home range patterns of the American Hog-nosed Skunk (Conepatus leuconotus). The American Midland Naturalist 174:310-320.

BRIONES-SALAS, M. 2000. Lista anotada de los mamíferos de la región de la Cañada en el Valle de Tehuacán-Cuicatlán, Oaxaca, México. Acta Zoológica Mexicana (n. s.) 61:83-103.

CAROTHERS, J. H., Y F. M. JAKSIC. 1984. Time as a niche difference: the role of interference competition. Oikos 42:403-406.

CASTILLO, D. F., E. M. LUENGOS-VIDAL, E. B. CASANAVE, M. LUCHERINI, Y R. A. OJEDA. 2012. Habitat selection of Molina’s hog-nosed skunks in relation to prey abundance in the Pampas grassland of Argentina. Journal of Mammalogy 93:716-721.

CEBALLOS, G., Y A. MIRANDA. 1986. Los mamíferos de Chamela, Jalisco: manual de campo. Universidad Nacional Autónoma de México, Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, México.

CERVANTES, F. A., J. LOREDO, Y J. VARGAS. 2002. Abundance of sympatric skunks (Mustelidae: Carnivora) in Oaxaca, Mexico. Journal of Tropical Ecology 18:463-469.

CORTÉS-MARCIAL, M., Y M. BRIONES-SALAS. 2014. Diversidad, abundancia relativa y patrones de actividad de mamíferos medianos y grandes en una selva seca del Istmo de Tehuantepec, Oaxaca, México. Revista de Biología Tropical 62:1433-1448.

CRUZ-JÁCOME, O., E. LÓPEZ-TELLO, C. A. DELFÍN-ALFONSO, Y S. MANDUJANO. 2015. Riqueza y abundancia relativa de mamíferos medianos y grandes en una localidad en la Reserva de la Biosfera Tehuacán-Cuicatlán, Oaxaca, México. Therya 6:435-448.

CUARÓN, A. D., J. F. GONZÁLEZ-MAYA, K. HELGEN, F. REID, J. SCHIPPER, Y J. W. DRAGOO. 2016. Mephitis macroura. The IUCN Red List of Threatened Species. https://dx.doi.org/10.2305/IUCN.UK.2016-1.RLTS.T41634A45211135.en

DAVIES, T. J., S. MEIRI, T. G. BARRACLOUGH, Y J. L. GITTLEMAN. 2007. Species co-existence and character divergence across carnivores. Ecology Letters 10:146-152.

DÁVILA, P., M. C. ARIZMENDI, A. VALIENTE-BANUET, J. L. VILLASEÑOR, A. CASAS, Y R. LIRA. 2002. Biological diversity in the Tehuacán-Cuicatlán Valley, México. Biodiversity and Conservation 11:421-442.

DAVIS, W. B. 1945. Texas skunks. Texas Game and Fish 3:8-10.

DI BITETTI, M. S., Y. E. DI BLANCO, J. A. PEREIRA, A. PAVIOLO, Y I. JIMÉNEZ-PÉREZ. 2009. Time partitioning favors the coexistence of sympatric crab-eating foxes (Cerdocyon thous) and pampas foxes (Lycalopex gymnocercus). Journal of Mammalogy 90:479-490.

DI BITETTI, M. S., C. D. DE ANGELO, Y. E. DI BLANCO, Y A. PAVIOLO. 2010. Niche partitioning and species coexistence in a Neotropical felid assemblage. Acta Oecologica 36:403-412.

DI RIENZO, J., F. CASANOVES, M. BALZARINI, L. GONZÁLEZ, M. TABLADA, Y C. ROBLEDO. 2017. InfoStat versión 2017. Grupo InfoStat, F. C. A. Universidad Nacional de Córdoba. Córdoba, Argentina.

DONADIO, E., Y S. W. BUSKIRK. 2006. Diet, morphology, and interspecific killing in Carnivora. The American Naturalist 167:524-536.

DOTY, J. B., Y R. C. DOWLER. 2006. Denning ecology in sympatric populations of skunks (Spilogale gracilis and Mephitis mephitis) in west-central Texas. Journal of Mammalogy 87:131-138.

DRAGOO, J. W., Y S. R. SHEFFIELD. 2009. Conepatus leuconotus. Mammalian Species 827:1-8.

ELIZALDE-ARELLANO, C., J. C. LÓPEZ-VIDAL, L. HERNÁNDEZ, J. W. LAUNDRÉ, F. A. CERVANTES, F. M. MORALES-MEJÍA, M. RAMÍREZ-VARGAS, L. F. DÁVILA-GALAVIZ, A. GONZÁLEZ-ROMERO, Y M. ALONSO-SPILSBURY. 2014. Registro de presencia y actividades de algunos mamíferos en el Desierto Chihuahuense, México. Therya 5:793-816.

ESTES, J. A., J. TERBORGH, J. S. BRASHARES, M. E. POWEL, J. BERGER, W. J. BOND, S. R. CARPENTER, T. E. ESSINGTON, R. D. HOLT, J. B. C. JACKSON, R. J. MARQUIS, L. OKSANEN, T. OKSANEN, R. T. PAINE, E. K. PIKITCH, W. J. RIPPLE, S. A. SANDIN, M. SCHEFFER, T. W. SCHOENER, J. B. SHURIN, A. R. E. SINCLAIR, M. E. SOULÉ, R. VIRTANEN, Y D. A. WARDLE. 2011. Trophic downgrading of planet Earth. Science 333:301-306.

FARIAS, V., T. K. FULLER Y R. M. SAUVAJOT. 2012. Activity and distribution of gray foxes (Urocyon cinereoargenteus) in southern California. The Southwestern Naturalist 57:176-181.

FARÍAS, V., O. TÉLLEZ, F. BOTELLO, O. HERNÁNDEZ, J. BERRUECOS, S. J. OLIVARES, Y J. C. HERNÁNDEZ. 2015. Primeros registros de 4 especies de felinos en el sur de Puebla, México. Revista Mexicana de Biodiversidad 86:1065-1071.

FARÍAS-GONZÁLEZ, V., Y C. N. VEGA-FLORES. 2019. Spotted skunks (Spilogale angustifrons) photo-captured following gray foxes (Urocyon cinereoargenteus) in tropical dry forest in central Mexico. Journal of Arid Environments 160:25-31.

FISHER, N. I. 1995. Statistical Analysis of Circular Data. Cambridge University Press. U. K.

FULLER, T. K., W. E. JOHNSON, W. L. FRANKLIN, Y K. A. JOHNSON. 1987. Notes on the Patagonian Hog-Nosed Skunk (Conepatus humboldti) in Southern Chile. Journal of Mammalogy 68: 864-867.

FULLER, T. K, Y D. W. KHUEN. 1985. Population characteristics of striped skunks in northcentral Minnesota. Journal of Mammalogy 66:813-815.

GERBER, B. D., S. M. KARPANTY, Y J. RANDRIANANTENAINA. 2012. Activity patterns of carnivores in the rain forests of Madagascar: implications for species coexistence. Journal of Mammalogy 93:667-676.

GILBERT, N. A., J. D. J. CLARE, J. L. STRENGLEIN, Y B. ZUCKERBERG. 2020. Abundance estimation of unmarked animals based on camera-trap data. Conservation Biology 0:1 -12.

HARMSEN, B. J., R. J. FOSTER, S. C. SILVER, L. E. T. OSTRO, Y P. DONCASTER. 2009. Spatial and temporal interactions of sympatric jaguars (Panthera onca) and pumas (Puma concolor) in a neotropical forest. Journal of Mammalogy 90:612-620.

HELGEN, K. 2016. Conepatus leuconotus. The IUCN Red List of Threatened Species. http://dx.doi.org/10.2305/IUCN.UK.2016-1.RLTS.T41632A45210809.en

HELGEN, K., F. REID, Y R. TIMM. 2016. Spilogale angustifrons. The IUCN Red List of Threatened Species. http://dx.doi.org/10.2305/IUCN.UK.2016-1.RLTS.T136636A45221538.en

HOLT, R., D., Y G. A. POLIS. 1997. A theoretical framework for intraguild predation. The American Naturalist 14:745-764.

HUNTER, J., Y T. CARO. 2008. Interspecific competition and predation in American carnivore families. Ethology Ecology and Evolution 20:295-324.

HWANG, Y. T., Y S. LARIVIÈRE. 2001. Mephitis macroura. Mammalian Species 683:1-3.

KARANTH, K. U. 1995. Estimating tiger Panthera tigris populations from camera-trap data using capture–recapture models. Biological Conservation 71:333-338.

KARANTH, K. U., A. SRIVATHSA, D. VASUDEV, M. PURI, R. PARAMESHWARAN, Y N. S. KUMAR. 2017. Spatio-temporal interactions facilitate large carnivore sympatry across a resource gradient. Proceedings of the Royal Society B 284:20161860.

KINLAW, A. 1995. Spilogale putorius. Mammalian Species 551:1-7.

KRONFELD-SCHOR, N., Y T. DAYAN. 2003. Partitioning of time as an ecological resource. Annual Review of Ecology and Systematics 34:153-181.

LARIVIÈRE, S., Y F. MESSIER. 1998. Spatial organization of a prairie striped skunk population during the waterfowl nesting season. The Journal of Wildlife Management 62:199-204.

LESMEISTER, D. B., M. E. GOMPPER, Y J. J. MILLSPAUGH. 2009. Habitat selection and home range dynamics of eastern spotted skunks in the Ouachita Mountains, Arkansas, USA. Journal of Wildlife Management 73:18-25.

LESMEISTER, D. B, C. K. NIELSEN, E. M. SCHAUBER, Y E. C. HELLGREN. 2015. Spatial and temporal structure of a mesocarnivore guild in midwestern North America. Wildlife Monographs 191:1-61.

LIRA-TORRES, I., Y M. BRIONES-SALAS. 2012. Abundancia relativa y patrones de actividad de los mamíferos de los Chimalapas, Oaxaca, México. Acta Zoológica Mexicana 28:566-585.

LIST, R., Y D. W. MACDONALD. 1998. Carnivora and their larger mammalian prey: species inventory and abundance in the Janos-Nuevo Casas Grandes prairie dog complex, Chihuahua. Revista Mexicana de Mastozoología 3:95-112.

LUCHERINI, M., J. I. REPPUCCI, R. S. WALKER, M. L. VILLALBA, A. WURSTTEN, G. GALLARDO, A. IRIARTE, R. VILLALOBOS Y P. PEROVIC. 2009. Activity pattern segregation of carnivores in the High Andes. Journal of Mammalogy 90:1404-1409.

MAFFEI, L., E. CUÉLLAR, Y A. J. NOSS. 2002. Uso de trampas-cámara para la evaluación de mamíferos en el ecotono Chaco-Chiquitanía. Revista Boliviana de Ecología y Conservación Ambiental 11:55-65.

MARTI, C. D., K. STEENHOF, M. N. KOCHERT, Y J. S. MARKS. 1993. Community trophic structure: the roles of diet, body size, and activity time in vertebrate predators. Oikos 67:6-18.

MEANEY, C. A., A. K. RUGGLES, Y G. P. BEAUVAIS. 2006. American Hog-nosed Skunk (Conepatus leuconotus): a technical conservation assessment. U. S. D. A. Forest Service, Rocky Mountain Region. http://www.fs.fed.us/r2/projects/scp/assessments/americanhognosedskunk.pdf

MEEK, P. D., G. BALLARD, A. CLARIDGE, R. KAYS, K. MOSEBY, T. O’BRIEN, A. O’CONNELL, J. SANDERSON, D. E. SWANN, M. TOBLER, Y S. TOWNSEND. 2014. Recommended guiding principles for reporting on camera trapping research. Biodiversity Conservation 23:2321-2343.

MEREDITH, M.,Y M. RIDOUT. 2020. Overlap 0.3.3. Estimates of coefficient of overlapping for animal activity patterns. R Core Team.

MILLS, M. G., Y L. B. PATTERSON. 2009. Not just black and white: pigment pattern development and evolution in vertebrates. Seminars in Cell and Developmental Biology 20:72-81.

MONROY-VILCHIS, O., M. M. ZARCO-GONZÁLEZ, C. RODRÍGUEZ-SOTO, L. SORIA-DÍAZ, Y V. URIOS. 2011. Fototrampeo de mamíferos en la Sierra Nanchititla, México: abundancia relativa y patrón de actividad. Revista de Biología Tropical 59:373-383.

NEISWENTER, S. A., Y R. C. DOWLER. 2007. Habitat use of western spotted skunks and striped skunks in Texas. The Journal of Wildlife Management 71:583-586.

NEISWENTER, S. A., R. C. DOWLER, Y J. H. YOUNG. 2010. Activity patterns of two sympatric species of skunks (Mephitis mephitis and Spilogale gracilis) in Texas. The Southwestern Naturalist 55:16-21.

NIELSENE, T. 1983. Relation of behavioral activity rhythms to the changes of day and night. A revision of views. Behaviour 89:147-173.

PALOMARES, F., Y T. M. CARO. 1999. Interspecific killing among mammalian carnivores. The American Naturalist 153:492-508.

PATTON, R. F. 1974. Ecological and behavioral relationships of the skunks of Trans Pecos Texas. Texas A&M University. Texas A&M University. Libraries. Texas. https://hdl.handle.net/1969.1/DISSERTATIONS-172552.

PÉREZ-IRINEO, G., E. LÓPEZ-TELLO, Y S. MANDUJANO. 2020. Skunks and gray foxes in a tropical dry region: casual or positive interactions? Mammalia 84:5.

POLIS, G. A., C. A MYERS, Y R. D. HOLT. 1989. The ecology and evolution of intraguild predation: Potential competitors that eat each other. Annual Review on Ecology and Systematics 20:297-330.

REID, F. A. 1997. A field guide to the mammals of Central America and southeast Mexico. Oxford University Press. New York, New York, EE.UU.

ROSATTE, R. C., Y S. LARIVIÈRE. 2003. Skunks (genera Mephitis, Spilogale, and Conepatus). Pp. 692-707, in Wild Mammals of North America: Biology, Management, and Conservation (Feldhamer, G. A., B. C. Thompson, y J. A. Chapman, eds.). The Johns Hopkins University Press. Baltimore, Maryland.

ROOT, R. 1967. The niche exploitation pattern of the Blue-Gray Gnat Catcher. Ecological Monographs 37:317-350.

RSTUDIO TEAM. 2020. RStudio: Integrated Development for R. RStudio, PBC, Boston, MA URL http://www.rstudio.com/.

RZEDOWSKI, J. 1978. Vegetación de México. Limusa. Ciudad de México, México.

SECRETARÍA DE MEDIO AMBIENTE Y RECURSOS NATURALES (SEMARNAT). 2013. Programa de Manejo Reserva de la Biosfera Tehuacán-Cuicatlán. Secretaría de Medio Ambiente y Recursos Naturales. Comisión Nacional de Áreas Naturales Protegidas. Ciudad de México, México.

SCHOENER, T. W. 1974. Resource partitioning in ecological communities. Science 185:27-39.

SIMBERLOFF, D., Y T. DAYAN. 1991. The guild concept and the structure of ecological communities. Annual Review on Ecology and Systematics 22:115-143.

SKIPPER, B. R., D. KIM, Y C. MORRIS. 2020. Seasonal abundance and nutritional concentration of grassland arthropods. Western North American Naturalist 80:19-27.

TAYLOR, W. P. 1953. Food habits of hog-nosed skunk in Texas. Part of Final Report Project W-31-R-1, Food habits of furbearers in relation to Texas game species. Texas Game and Fish Commission. Austin, Texas.

TÉLLEZ-VALDÉS, O., V. FARÍAS, P. DÁVILA-ARANDA, J. L. STEIN, R. LIRA-SAADE, Y F. BOTELLO. 2010. Diversidad de mamíferos en los dominios climáticos de la Reserva de la Biosfera Tehuacán-Cuicatlán, México. Revista Mexicana de Biodiversidad 81:863-874.

THEIMER, T. C., D. T. RAY, Y D. L. BERGMAN. 2017. Camera angle and photographic identification of individual striped skunks. Wildlife Society Bulletin 41:146-150.

TOBLER, M. W., S. E. CARRILLO-PERCASTEGUI, R. LEITE-PITMAN, R. MARES, Y G. POWELL. 2008. An evaluation of camera traps for inventorying large and medium sized terrestrial rainforest mammals. Animal Conservation 11:169-178.

VALIENTE-BANUET, A., A. CASAS, A. ALCÁNTARA, P. DÁVILA, N. FLORES-HERNÁNDEZ, M. C. ARIZMENDI, J. VILLASEÑOR, Y J. ORTEGA. 2000. La Vegetación del Valle de Tehuacán-Cuicatlán. Boletín de la Sociedad Botánica de México 67:24-74.

VAN VALKENBURGH, B. 1985. Locomotor diversity within past and present guilds of large predatory mammals. Paleobiology 11:406-428.

WADE-SMITH, J., Y B. J. VERTS. 1982. Mephitis mephitis. Mammalian Species, 173:1-7.

WANG, X., Y O. CARRANZA-CASTAÑEDA. 2008. Earliest hog-nosed skunk, Conepatus (Mephitidae, Carnivora), from the early Pliocene of Guanajuato, Mexico and origin of South American skunks. Zoological Journal of the Linnean Society, 154:386-407.

WANG, X., O. CARRANZA-CASTAÑEDA, Y J. J. ARANDA-GÓMEZ. 2014. A transitional skunk, Buisnictis metabatos sp. nov. (Mephitidae, Carnivora), from Baja California Sur and the role of southern refugia in skunk evolution, Journal of Systematic Palaeontology, 12:291-302.

ZAR, J. H. 1999. Biostatistical Analysis. Prentice Hall Press. New Jersey, EE.UU.

Downloads

Published

2021-07-16

Issue

Section

Articles