Characterization of assemblages in neotropical cave dwelling bats based on their diet, wing morphology, and flight performance

Authors

  • Fernando Salgado-Mejia Universidad Autónoma Metropolitana
  • Ricardo López-Wilchis Universidad Autónoma Metropolitana
  • Luis Manuel Guevara-Chumacero Universidad Autónoma Metropolitana
  • Pedro L. Valverde-Padilla Universidad Autónoma Metropolitana
  • Pablo Corcuera Martínez del Rio Universidad Autónoma Metropolitana
  • Sergio L. Porto-Ramírez Universidad Autónoma Metropolitana
  • Ixchel Rojas-Mertínez Universidad Autónoma Metropolitana
  • Gihovani A. Samano-Barbosa Universidad Autónoma Metropolitana

Keywords:

Chiroptera, coexistnce, Mormoopidae, Natalidae, trophic guild.

Abstract

Bats have a great variety of wing morphologies that determines the bat’s flight performance, and this in turn conditions the forage aerosphere and the food it can obtain. Several studies have shown differences in wing morphology, flight performance, and forage aerospheres among species from different trophic guilds. However, for species that share a guild this is not entirely clear. It is possible that these species have differences in their diet and show changes in wing morphology that modify their flight performance and forage areas. Determining this will allow a better understanding of spatial segregation among species that share a trophic guild. These studies allow the identification of species assemblages based on wing morphological differences and flight performance that would not be distinguished only by guild membership. Our goal was to define the species assemblages that make up a community of Neotropical cave dwelling bats based on their trophic guild, flight performance, and forage zone. A community of Neotropical cave dwelling bats from a cave in Veracruz, Mexico was analyzed. The diet of each species was determined by means of their stomach contents and bibliographic review. In addition, aspect ratio, wing loading and tip index were calculated. Based on the wing characteristics and diet, multivariate groupings and orders were performed, as well as to define the assemblages present. According to the wing characteristics and the dietary composition, four groups of species were found that represent four different flight characteristics in terms of agility and maneuverability. There was agreement between diet and wing characteristics, and the four trophic groups were identified through canonical correspondence analysis. Correlating wing morphology, diet and forage area allows us to adequately define the assemblages of a community of bats. Regarding the hypothesis, it was found that species that share a food guild show differences in the composition of their food and wing morphology, which generate differences in flight performance and forage areas. Four assemblages differing in forage aerospheres among three trophic guilds are described: understory and facultative artrhopodivorous, semi-clearing hematophages, and facultative nectarivores. Finally, spatial segregation between the species of the families Mormoopidae and Natalidae was recognized.

Author Biographies

Fernando Salgado-Mejia, Universidad Autónoma Metropolitana

Estudiante del Doctorado en Ciencias Biologicas y de la Salud. Universidad Autonoma Metropolitana

Ricardo López-Wilchis, Universidad Autónoma Metropolitana

Profesor investigador del departamento de biología en la Universidad Autónoma Metropolitana unidad Iztapalapa

Luis Manuel Guevara-Chumacero, Universidad Autónoma Metropolitana

Profesor investigador del departamento de biología en la Universidad Autónoma Metropolitana unidad Iztapalapa

Pedro L. Valverde-Padilla, Universidad Autónoma Metropolitana

Profesor investigador del departamento de biología en la Universidad Autónoma Metropolitana unidad Iztapalapa

Pablo Corcuera Martínez del Rio, Universidad Autónoma Metropolitana

Profesor investigador del departamento de biología en la Universidad Autónoma Metropolitana unidad Iztapalapa

Sergio L. Porto-Ramírez, Universidad Autónoma Metropolitana

Estudiante de Maestría en Ciencias Biológicas. Universidad Autónoma Metropolitana unidad Iztapalapa

Ixchel Rojas-Mertínez, Universidad Autónoma Metropolitana

Estudiande de Maestría en Biología de la Reproducción Animal. Universidad Autónoma Metropolitana unidad Iztapalapa.

Gihovani A. Samano-Barbosa, Universidad Autónoma Metropolitana

Estudiande de Maestría en Biología de la Reproducción Animal. Universidad Autónoma Metropolitana unidad Iztapalapa.

References

ACOSTA, L. E., A. PÉREZ-GONZÁLEZ, Y A. L. TOURINHO. 2007. Methods for taxonomic study. Pp. 494-505 in Harvestmen: the biology of Opiliones (Pinto-da-Rocha, R., G. Machado y G. Giribet, eds.). Harvard University Press. Cambridge, EE. UU.

ALDRIDGE, H. D. J. N., Y I. L. RAUTENBACH. 1987. Morphology, echolocation and resource partitioning in insectivorous bats. Journal of Animal Ecology 56:763-778.

AMERICAN SOCIETY OF MAMMALOGISTS. 2020. Mammal Diversity Database. https://www.mammaldiversity.org. Consultado el 7 de agosto de 2020.

ANÓNIMO. 2010. Lineamientos para la conducción ética de la investigación, docencia y difusión. División de Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana, Iztapalapa, Ciudad de México, México.

ARLETTAZ, R. 1999. Habitat selection as a major resource partitioning mechanism between the two sympatric sibling bat species Myotis myotis and Myotis blythii. Journal of Animal Ecology 68:460-471.

ASHRAFI, S., A. BECK, M. RUTISHAUSER, R. ARLETTAZ, Y F. BONTADINA. 2011. Trophic niche partitioning of cryptic species of long-eared bats in Switzerland: implications of conservation. European Journal of Wildlife Research 57:843-849.

BARCLAY, R. M. R., Y R. M. BRIGHAM. 1991. Prey detection, dietary niche breadth, and body size in bats: why are aerial insectivorous bats so small? American Naturalist 137:693-703.

BOADA, C., S. BURNEO, T. DE VRIES, Y D. S. TIRIRA. 2003. Notas ecológicas y reproductivas del murciélago rostro de fantasma Mormoops megalophylla (Chiroptera: Mormoopidae) en San Antonio de Pichincha, Pichincha, Ecuador. Journal of Neotropical Mammalogy 10:21-26.

BRAY R. J., Y J. T. CURTIS. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs 27: 325–349.

BURGIN, C. J., J. P. COLELLA, P. L. KAHN, Y N. S. UPHAM. 2018. How many species of mammals are there? Journal of Mammalogy 99:1-11.

CARVALHO, F., M. E. FABIÁN, Y J. O. MENEGHETI. 2013. Vertical structure of an assemblage of bats (Mammalia: Chiroptera) in a fragment of Atlantic Forest in Southern Brazil. Zoologia 30:491-98.

CLARE, E. L., K. L. BURTON, B. M. FENTON, Y P. D. N. HEBERT. 2011. Neotropical bats: estimating species diversity with DNA barcodes. Plos One 6:1-14.

DENZINGER, A., Y S. HANS-ULRICH. 2013. Bat guilds, a concept to classify the highly diverse foraging and echolocation behaviors of microchiropteran bats. Frontiers in Physiology 4:1-15.

EMRICH, M. A., L. CLARE, W. O. C. SYMONDSON, S. E. KOENING, Y M. B. FENTON. 2014. Resource partitioning by insectivorous bats in Jamaica. Molecular Ecology 23:3648-3656.

ESTEFANO, P. D. B, R. L. MARISTERRA, Y G. ROGÉRIO. 2015. Prey preference of the common vampire bat (Desmodus rotundus, Chiroptera) using molecular analysis. Journal of Mammalogy 96:54-63.

FINDLEY, J. S., E. H. STUDIER, Y D. E. WILSON. 1972. Morphologic properties of bat wings. Journal of Mammalogy 53:429-444.

FUREY, N. M., Y P. A. RACEY. 2016. Can wing morphology inform conservation priorities for Southeast Asian cave bats? Biotropica 48:545-56.

GAGER, Y., E. TARLAND, D. LIECKFELDT, M. MÉNAGE, F. BOTERO-CASTRO, S. J. ROSSITER, R. H. S. KRAUS, A. LUDWING, Y D. K. N. DECHMANN. 2016. The value of molecular vs. morphometric and acustic information for species identification using sympatric molossid bats. Plos One. 11:1-24.

GARCÍA, F. J., D. ARAUJO-REYES, O. VÁSQUEZ- PARRA, H. BRITO, Y M. MACHADO. 2015. Murciélagos (Mammalia: Chiroptera) asociados a una cueva en el parque nacional Yurubi, sierra de Aroa, estado Yaracuy, Venezuela. Caldasia 37:381-391.

GOODWIN, G. G., Y A. M. GREENHALL. 1961. A review of the bats of Trinidad and Tobago: descriptions, rabies infection. Bulletin of the American Museum of Natural History 122:187-302.

HAMMER, O., Y D. A. T. HARPER. 2006. Paleontological Data Analysis. Blackwell Publishing. Oxford, UK.

HEDENSTRÖ, A., Y L. C. JOHANSSON. 2015. Bat flight: aerodynamics, kinematics and flight morphology. The Journal of Experimental Biology 218:653-663.

HOPKINS, H. L, C. SÁNCHEZ-HERNÁNDEZ, M. DE L. ROMERO-ALMARAZ, L. M. GILLEY, G. D. SCHNELL, Y M. L. KENNEDY. 2003. Flight Speeds of Four Species of Neotropical Bats. The Southwestern Naturalist 48:711-714.

HOWELL, D. J. 1974. Acoustic behavior and feeding in Glossophagine bats. Journal of Mammalogy 55:293-308.

HUTCHINSON, G. E. 1959. Homage to Santa Rosalia or why are there so many kinds of animals? American Naturalist 93:145-159.

ITO, F., E. BERNARD, Y R. A. TORRES. 2016. What is for dinner? First report of human blood in the diet of the hairy-legged vampire bat Diphylla ecaudata. Acta Chiropterologica 18:509-515.

JONCKHERE, I., S. FLECK, K. NACKAERTS, B. MUYS, Y P. F. BARET. 2004. Review of methods for in situ leaf area index determination part 1. Theories, sensors and hemispherical photography. Agricultural and Forest Meteorology 121:19-35.

KALKO, K. V. E., Y C. O. HANDLEY JR. 2001. Neotropical bats in the canopy: diversity, community structure and implications for conservation. Plant Ecology 153:319-333.

KALKO, K. V. E., C. O. HANDLEY JR., Y D. HANDLEY. 1996. Organization, diversity, and long-term dynamics of a Neotropical bat community. Pp. 503-533 in Long-term studies in vertebrate communities (Cody, M. L. y J. A. Smallwood, eds.). Academic Press, San Diego, EE. UU.

KALKO, K.V. E., S. V. ESTRADA, M. SCHMIDT, M. WEGMANN, Y C.F.J. MEYER. 2008. Flying High-Assessing the use of the aerosphere by bats. Oxford University Press 40:60-73.

KRÃœGER, F., E. L. CLARE, S. GREIF, B. M. SIMERS, W. O. C. SYMONDSON, Y R. S SOMMER. 2014. An integrative approach to detect subtle trophic niche differentiation in the sympatric trawling bat species Myotis dasycnme and Myotis daubentonii. Molecular Ecology 23:3657-3671.

KUNZ, T. H., E. B. DE TORRES, D. BAUER, T. LOBOVA, Y T. H. FLEMING. 2011. Ecosystem services provided by bats. Annals of the New York Academy of Sciences 1223:1-38.

MACARTHUR, R., Y R. LEVINS. 1967. The limiting similarity, convergence, and divergence of coexisting species. The American Naturalist 101:377-385.

MACSWINEY, M. C. G., B. B. CIMÉ, F. M. CLARKE, Y P. A. RACEY. 2009. Insectivorous bat activity at cenotes in the Yucatan Peninsula, Mexico. Acta Chiropterologica 11:139-147.

MANCINA, C. A., L. GARCÍA-RIVERA, Y B. W. MILLER. 2012. Wing morphology, echolocation, and resource partitioning in syntopic Cuban mormoopid bats. Journal of Mammalogy 93:1308-1317.

MARINELLO, M. M., Y E. BERNARD. 2014. Wing morphology of Neotropical bats: a quantitative and qualitative analysis with implications for habitat use. Canadian Journal of Zoology 92:141-147.

MEDELLÍN, R. A., H. T. ARITA, Y O. H. SÁNCHEZ. 2008. Identificación de los murciélagos de México. Claves de campo. Revista Mexicana de Mastozoología 2:1-83.

MORENO, E. C., Y G. HALFFTER. 2000. Assessing the completeness of bat biodiversity inventories using species accumulation curves. Journal of Applied Ecology 37:149-158.

MORENO, E. C., H. T. ARITA, Y L. SOLIS. 2006. Morphological assembly mechanisms in Neotropical bat assemblages and ensembles within a landscape. Oecologia 149:133-140.

NORBERG, R. A., Y U. M. NORBERG. 1971. Take-off, landing, and flight speed during fishing flights of Gavia stellata. Scandinavian Journal of Ornithology 2:55-67.

NORBERG, U. M. 2002. Structure, form, and function of flight in engineering and the living world. Journal of Morphology 252:52-81.

NORBERG, U. M., Y J. M. V. RAYNER. 1987. Ecological morphology and flight in bats (Mammalia; Chiroptera): wing adaptations, flight performance, foraging strategy and echolocation. Philosophical Transactions of the Royal Society B: Biological Sciences 316:335-427.

NORBERG, U. M., Y R. Ã…. NORBERG. 2012. Scaling of wingbeat frequency with body mass in bats and limits to maximum bat size. Journal of Experimental Biology 215:711-722.

NORBERG, U. M., T. H. KUNZ, J. F. STEFFENSEN, Y. WINTER, Y O. V. HELVERSEN. 1993. The cost of hovering and forward flight in a nectar-feeding bat, Glossophaga soricina, estimated from aerodynamic theory. Journal of Exprimental Biology 182:207-227.

NORTON, S. F. 1995. A functional approach to the ecomorphological patterns on feeding in cottid fishes. Environmental Biology of Fishes 44:61-78.

O’NEILL, M. G., Y R. J. TAYLOR. 1989. Feeding ecology of Tasmanian bat assemblages. Australian Journal of Ecology 14:19-31.

ORTEGA, J., Y H. T. ARITA. 1998. Neotropical-Neartic limits in Middle America as determined by distribution of bats. Journal of Mammalogy 79:772-83.

PAVAN, A. C., Y G. MARROIG. 2016. Integrating multiple evidences in taxonomy: species diversity and phylogeny of mustached bats (Mormoopidae: Pteronotus). Molecular Phylogenetics and Evolution 103:184-198.

PAVAN, A. C., Y G. MARROIG. 2017. Timing and patterns of diversification in the Neotropical bat genus Pteronotus. Mormoopidae. Molecular Phylogenetics and Evolution 108: 61–69.

QUEIROZ DE OLIVEIRA, L., R. MARCIENTE, W. E. MAGNUSSON, Y P. E. D. BOBROWIEC. 2015. Activity of the insectivorous bat Pteronotus parnellii relative to insect resources and vegetation structure. Journal of Mammalogy 96:1036-1044.

REZSUTEK, M., Y G. N. CAMERON. 1993. Mormoops megalophylla. Mammalian Species 448:1-5.

RODRÍGUEZ-DURÁN, A. 2009. Bat assemblages in the west Indies: the role of caves. Pp. 265-280 in Island Bats evolution, ecology and conservation (T. H. Fleming y P. A. Racey, eds.) The University of Chicago Press. Chicago, EE. UU.

ROLFE, A. K., Y A. KURTA. 2012. Diet of Mormoopid bats on the Caribbean island of Puerto Rico. Acta Chiropterologica 14:77-369.

ROLFE, A. K., A. KURTA, Y D. L. CLEMANS. 2014. Species-level analysis of diets of two mormoopid bats from Puerto Rico. Journal of Mammalogy 95:587-96.

RUSCHI, A. 1951. Morcegos do Estado do Espírito Santo: Descrição de Diphylla ecaudata Spix e algumas observações a seu respeito. Boletim do Museu de Biologia 3:1-6.

RZEDOWSKI, J. 2006. Vegetación de México. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. México 432.

SALINAS-RAMOS, V. B., L. G. M. HERRERA, V. LEÓN-REGAGNON, A. ARRIZABALAGA-ESCUDERO, Y E. L. CLARE. 2015. Dietary overlap and seasonality in three species of mormoopid bats from a tropical dry forest. Molecular Ecology 24:5296-5307.

SALSAMENDI, E., I. GARIN, I. AROSTEGUI, U. GOITI, Y J. AIHARTZA. 2012. What mechanism of niche segregation allows the coexistence of sympatric sibling rhinolophid bats? Frontiers in Zoology 9:1-12.

SÁNCHEZ-HERNÁNDEZ, C., M. DE L. ROMERO- ALMARAZ, M. C. WOOTEN, G. D. SCHINELL, Y M. L. KENNEDY. 2006. Speed in flight of common vampire bats. Southwestern Naturalist 51:422-425.

SÁNCHEZ, N., Y T. ÁLVAREZ. 2000. Palinofagia de los murciélagos del género Glossophaga (Mammalia: Chiroptera) en México. Acta Zoológica Mexicana 81:23-62.

SIKES, R., W. L. GANNON, Y THE ANIMAL CARE USE COMMITTEE OF THE AMERICAN SOCIETY OF MAMMALOGISTS. 2016. Guidelines of the American Society of Mammalogists for the use of wild mammals in research and education. Journal of Mammalogy 97:663-688.

STEVENS, R. D., Y H. N. AMARILLA-STEVENS. 2012. Seasonal environments, episodic density compensation and dynamics of structure of chiropteran frugivore guilds in Paraguayan Atlantic Forest. Biodiversity and Conservation 21:267-279.

STEVENS, R. D., M. R. WILLIG, Y I. GAMARRA DE FOX. 2004. Comparative community ecology of bats from eastern Paraguay: taxonomic, ecological, and biogeographic perspectives. Journal of Mammalogy 85:698-707.

STONER, K. 2005. Phyllostomid bat community structure and abundance in two contrasting trópical dry forest. Biotropica 37:591-599.

SWARTZ, S. M. 1991. Strain analysis as a tool for functional morphology. American Zoologist 31:655-669.

SWARTZ, S. M., P. W. FREEMAN, Y E. F. STOCKWELL. 2003. Ecomorphology of bats: comparative and experimental approaches relating structural design to ecology. Papers in Natural Resource 10:257-300.

TIRIRA, S. D. 1998. Historia natural de los muerciélagos neotropicales. Museo de Zoología, Pontificia Universidad Católica de Ecuador. Publicación Especial 1:31-56.

TORRES-FORES W. J., Y R. LÓPEZ-WILCHIS. 2018. Trophic niche and diet of Natalus mexicanus (Chiroptera: Natalidae) in a tropical dry forest of Western Mexico. Acta Chiropterologica 20:343-50.

UIEDA, W. 1996. Biologia e dinâmica populacional de morcegos hematófagos. Anais do II Curso de Atualização em raiva dos herbívoros, Curitiba 63-87.

WHITAKER, J. O., C. NEEFUS JR., Y T. H. KUNZ. 1996. Dietary variation in the Mexican free-tailed bat (Tadarida brasiliensis). Journal of Mammalogy 77:716-724.

WHITAKER, J. O., G. F. MCCRACKEN, Y B. M. SIEMERS. 2003. Food habits analysis of insectivorous bats. Pp. 567-592 in Ecological and behavioral methods for the study of bats (Kunz T. H. and S. Parson, eds.). The Johns Hopkins University Press, Baltimore, Maryland.

Published

2021-04-15

Issue

Section

Articles