THERYA NOTES 2021, Vol. 2 : 56-64 DOI: 10.12933/therya_notes-21-36

Evaluation of the potential highest altitudinal record of Micronycteris hirsuta

Evaluación del registro potencial de mayor altitud para Micronycteris hirsuta

Daniela Martínez-Medina1*, Camilo A. Calderón-Acevedo1,2, Darwin M. Morales-Martínez1,3, and Miguel E. Rodríguez-Posada1

1Fundación Reserva Natural La Palmita, Centro de Investigación, Grupo de Investigaciones territoriales para el uso y conservación de la biodiversidad. Carrera 4 No 58-59, C. P. 10111. Bogotá D. C., Colombia. E-mail: danielamarmed0@gmail.com (DM-M), director.cientifico@lapalmita.com.co (MER-P).

2Department of Biological Sciences, Rutgers University. 195 University Ave, Newark, C. P. 07102. New Jersey, U.S.A. E-mail: camilo.calderon@rutgers.edu (CAC-A).

3Grupo de Conservación y Manejo de Vida Silvestre, Instituto de Ciencias Naturales, Universidad Nacional de Colombia. Calle 53 No 35-83, C. P. 111321. Bogotá D. C., Colombia. E-mail: dmmoralesm@unal.edu.co (DMM-M).

*Corresponding author

Micronycteris hirsuta is a species widely distributed in Central and South America at altitudes no higher than 1,500 m, and it is associated with conserved forests. We found a dead individual in Bogotá city at 2,600 m. Considering that previous records for this species come from lower altitudes and that this species is mostly found in undisturbed ecosystems, we question the presence of M. hirsuta in the city. To assess the possibility that this species inhabits areas close to the city, we developed an Ecological Niche Model (ENM), reviewed its distribution in Colombia, and the reported bat species from the city of Bogotá. We report the highest altitudinal record of M. hirsuta at 2,600 m. The specimen found exhibits all the diagnostic characters recognized for this species. However, we did not find evidence that supports the likelihood that M. hirsuta inhabits areas near Bogotá. According to our results and the species’ ecological attributes, we do not support that M. hirsuta inhabits areas near Bogotá and other high-altitude ecosystems. We discuss other hypotheses that could explain this record’s presence, including a possible migration or an accidental transport from lowlands. We highlight the importance of evaluating unusual distributional records of species using ENMs and discuss these below the light of species’ ecological attributes.

Key words: Biological collections; ecological niche model; Micronycterinae; urban bats.

Micronycteris hirsuta es una especie ampliamente distribuida en el Centro y Sur de América en altitudes no mayores a los 1,500 m y asociada con bosques conservados. Se registró un individuo muerto de esta especie en la ciudad de Bogotá, a 2,600 m. Considerando que los registros previos provienen de altitudes más bajas y que esta especie no es frecuente en ecosistemas perturbados, se cuestiona la presencia de M. hirsuta en la ciudad. Para evaluar si es probable que esta especie habite en áreas cercanas a Bogotá, se desarrolló un modelo de nicho ecológico (ENM, por sus iniciales en inglés), se revisó la distribución de esta especie en Colombia y las especies reportadas para la ciudad de Bogotá. Se reporta el registro de mayor altitud de Micronycteris hirsuta, a 2,600 m. El espécimen encontrado exhibe todos los caracteres diagnósticos conocidos para esta especie. Sin embargo, no se encontró evidencia que respalde la presencia de M. hirsuta en áreas cerca de Bogotá. De acuerdo con los resultados y los atributos ecológicos de esta especie, no se respalda que M. hirsuta habite áreas cercanas a Bogotá y otros ecosistemas de altitud alta. Se discuten otras hipótesis que pueden explicar este registro, incluyendo una posible migración o un transporte accidental desde las zonas bajas. Se resalta la importancia de evaluar los registros inusuales en la distribución de las especies usando ENMs y analizándolos bajo la luz de los atributos ecológicos de cada especie.

Palabras clave: Colecciones biológicas; Micronycterinae; modelo de nicho ecológico; murciélagos urbanos.

© 2021 Asociación Mexicana de Mastozoología, www.mastozoologiamexicana.org

Micronycteris hirsuta (W. Peters, 1869) has a wide distribution range. However, it is considered a rare species due to its low abundance from few and scattered localities (Arita 1993; Reid 2009). This species inhabits primary forests (Sampaio et al. 2016), deciduous lowland forests, and forest edges (Reid 2009), but also occurs in cleared areas and secondary vegetation (Handley 1978; Simmons and Voss 1998), always near to conserved forests (Sampaio et al. 2016). This species feeds on insects gleaned from vegetation and fruits depending on the season (Reid 2009) and, like other Micronycteris bats, can be considered as an indicator of undisturbed forests (Fenton et al. 1992; Medellín et al. 2000; Schulze et al. 2000).

Micronycteris hirsuta is distributed from the border between Honduras and Nicaragua to the south through Central America and northern South America. To the west of the Andes, it is present in Ecuador, and to the east through Colombia, Venezuela, Trinidad and Tobago, and the Guianas to the lowlands from Perú, the north of Bolivia, and the Brazilian Amazons; additionally, there is an isolated population in south-eastern Brazil (Williams and Genoways 2008; Sampaio et al. 2016). This species is known on an altitudinal range from 0 to 1,500 m (Reid 2009). In Colombia, M. hirsuta is present in the lowlands of the Amazon, Andean, Caribbean, and Pacific regions in localities with elevations between 20 and 1,100 m (Mantilla-Meluk et al. 2009; Solari et al. 2013).

Recently, we found a dead individual of M. hirsuta in a street of Bogotá city that could correspond to the highest record for the species, at 2,600 m. However, because the species is known from lowlands and is infrequent in highly disturbed areas, we assess the likelihood of M. hirsuta inhabiting Bogotá through an Ecological Niche Model (ENM) and a review of its distribution. Additionally, we included a revision of the bat species recorded in Bogotá.

The record we report here corresponds to a carcass found in a sidewalk under a Cecropia sp. tree in the Chapinero neighborhood (Calle 53#3-27 Bogotá D. C. 4° 3817’’ N, 74° 0336’’ W) at 2,600 m on February 29, 2020. We preserved the specimen and tissue samples (foot) in 96 % ethanol and deposited it in the mammal collection “Colección de mamíferos Alberto Cadena García” at the Instituto de Ciencias Naturales, Universidad Nacional de Colombia (ICN), under the catalogue number ICN 24849.

We revised all known records of M. hirsuta for Colombia to describe its distribution and built a points distribution map, including the biogeographic provinces proposed by Hernández-Camacho et al. (1992). To do this, we examined all specimens of M. hirsuta deposited in six scientific collections, and verified the identification of each of them based on Simmons (1996): Instituto Alexander von Humboldt, Villa de Leyva, Colombia (IAvH); Colección de mamíferos “Alberto Cadena García”, Instituto de Ciencias Naturales, Universidad Nacional de Colombia, Bogotá, Colombia (ICN); Museo de Historia Natural Universidad del Cauca, Popayán, Colombia (MHNUC); Colección de mamíferos, Universidad del Valle, Cali, Colombia (UV); Colección Teriológica Universidad de Antioquia (CTUA); and the American Museum of Natural History, New York (AMNH). Additionally, we include Colombian specimens reviewed by Simmons (1996) and Castaño et al. (2003; Table 1).

We observed diagnostic characters and took morphological measurements of the voucher specimen (Figure 1). We took the external measurements from specimen tags. We measured the forearm and skull with digital calipers to the nearest 0.01 mm, following Simmons and Voss (1998). We registered a total of 5 external measurements and 8 skull measurements (Table 2). However, for ICN 24849 reported here, we were unable to take all measurements due to the specimen’s condition. For ICN 24849, we measured the following (Table 2): length of the tail (TV), length of the hind foot (HF), length of the ear (EAR), and length of the forearm (FA).

To assess if the species is likely to occur in Bogotá and effectively finds suitable habitats around the city, first, we reviewed the bat species recorded in the urban area of Bogotá. We searched for M. hirsuta or closely related species that inhabit the vicinity of Bogotá through a Boolean Search of articles through Google Scholar, Scopus, and Web of Science. We conducted the search using the following keywords, in Spanish and English: Bats, Chiroptera, Bogotá, using the conjunction “AND”. Additionally, we revised the ICN’s online specimens’ database (https://www.biovirtual.unal.edu.co/es/colecciones/search/mammals/) visited on April 20, 2020.

We used ENMs to explore the likelihood that suitable habitat for M. hirsuta exists near Bogotá. We based our analysis in all specimens with confirmed taxonomical identification through morphology (revised by us or included in Simmons 1996) or molecular information (Porter et al. 2007; Table 1) considering the high misidentification rates in other species of the genus (Morales-Martínez et al. 2018) that could have an impact in the modeling. We do not include records from southeastern Brazilian distribution because cytogenetic evidence supports cryptic diversity in eastern Brazilian populations (Ribas et al. 2013). We used these 42 records representing 32 localities of 6 countries and our record from Bogotá to construct our ENMs (Appendix 1). We spatially thinned our original data to reduce sampling biases, ensuring that the distance between all localities pairs exceeds 10 km, using the R package spThin (Aiello‐Lammens et al. 2015).

We used the World Clim v2.1 data set (Fick and Hijmans 2017) as potential predictors of the species, all of them with a spatial resolution of 30 arc seconds (approximately 1 km2 resolution at the equator). To exclude highly correlated variables (> 0.80), we calculated Pearson’s correlation coefficients for every pairwise comparison of variables and chose 4 variables: Isothermality (Bio 3), Temperature Seasonality (Bio 4), Annual Precipitation (Bio 12), and Precipitation Seasonality (Bio 15). These variables are important in the distribution of different species of Neotropical bats due to their effect on primary productivity, the availability of food resources, and physiological requirements (McCain 2006; Ferreira et al. 2017). We delimited the study area to a buffer of two degrees around each locality and included 100,000 background points within the study area using the R packages sp and rgeos (Pebesma et al. 2005; Bivand et al. 2017) implemented in the package Wallace (Kass et al. 2018). To evaluate our models’ accuracy, we used a k-fold cross-validation approach, with a random block spatial partition of k = 4, separating the Amazon, the central, north, and the eastern Andes.

We constructed two frameworks of niche models with maximum entropy (Maxent; Phillips et al. 2006) approach using Maxent (Phillips et al. 2017) and the r package dismo (Hijmans et al. 2017) in Wallace. The first framework omitted the record of Bogotá, and the second included the record of Bogotá in the selected localities. For each model, we tested five different feature class combinations: L, LQ, H, LQH, and LQHP (L = linear, Q = quadratic, H = hinge, P = product) and regularization multipliers from 0.5 to 5 (with a multiplier step value of 0.5) to construct a total of 100 models. We evaluated our models using ENMeval (Muscarella et al. 2014) and used the AUC scores and a second-order Akaike Information Criterion (AIC, Akaike 1973; 1998) correcting for small sample sizes (AICc; Anderson and Burnham 2004; Burnham and Anderson 2004) to compare the fit of the models to our data statistically. We selected the models with the highest AUC and the lowest Akaike scores.

Finally, we used the average presence suitability to assess this species’ potential distribution, with the 10th percentile training presence used to create a presence-absence threshold (Hijmans et al. 2017). This procedure allowed us a stricter evaluation than a minimum training presence threshold (Waltari et al. 2007). We compare the two frameworks to test if the inclusion of the record of Bogotá influences the predicted model, increasing its distribution suitability near the city, and assess if the climate of the area is suitable for the species.

We report an unusual record of Micronycteris hirsuta, at 2,600 m (Figure 2C). Specimen ICN 24849 has all the diagnostic characters recognized for M. hirsuta (Simmons 1996; Simmons and Voss 1998; Williams and Genoways 2008). In terms of dental characters, the lower incisors are bifid, high crowned, and wedged tightly between the canines (Figure 1A). The specimen exhibits uniform brown coloration with bicolored long fur, ventral and dorsal fur not contrasting to each other, ears not completely rounded and connected by an interauricular band of skin, chin with a pair of dermal pads arranged in a “V” shape with no central papilla (Figure 1B), and a calcaneus greater than the foot (Figure 1C). The external measurements of the ICN 24849 are within the known range of the species. The averages of the examined specimens’ measurements are higher in females than in males (see Table 2); this could be attributed to sexual dimorphism in size, although our sample size did not allow us to test it statistically.

In Colombia, we know M. hirsuta from 21 localities (Table 1) spanning over 6 of the 9 biogeographic provinces of the country (Hernández-Camacho et al. 1992): the Caribbean dry belt province, the Choco-Magdalena province, the Orinoquia province, the Guyana province, the Amazon province, and the Northern Andes province (Figure 2A). The altitude ranges from 0 to 500 m (71 % of the records), 500 to 1,000 m (14 %), and 1,000 to 1,500 m (10 %). The ICN 24849 is the only record above 1,500 m (Figure 2B).

We did not find evidence of records of M. hirsuta near Bogotá. Near the city, we documented 12 species according to 9 articles published between 1927 and 2015. Shamel (1927) described Sturnira bogotensis based on a series of specimens captured in the “La Uribe” train station. Tamsitt et al. (1964) reported 8 species for the urban area of Bogotá: Carollia perspicillata, Sturnira ludovici, Myotis nigricans, Eptesicus fuscus, Histiotus colombiae, Aeorestes cinereus, Tadarida brasiliensis, and Eumops glaucinus. After these early records, other species have been reported: Sphaeronycteris toxophylum (Rodríguez-Posada and Cárdenas-González 2012), Lasiurus blossevillii (Morales-Martínez and Ramírez-Chaves 2015), and Choeroniscus godmani (Morales-Martínez and Henao-Cárdenas 2015). Andersen (1906) reported a specimen of Micronycteris megalotis from Bogotá. However, Tamsitt et al. (1964) discarded this finding and attributed the specimen to an accidental introduction. Other specimens in the ICN collection online database correspond to Anoura geoffroyi (ICN 3425, 12971), Promops sp. (ICN 4719), Artibeus sp. (ICN 12964), and Nyctinomops laticaudatus (ICN 19199).

In Figure 2C, we include the map of the distribution of M. hirsuta following Rojas et al. (2018). In Figure 3A and 3B, we include the logistic suitability with and without Bogotá, respectively. In both frameworks, we selected the models with the highest AUC and the lowest AIC. Both models used a linear feature and a regularization value of 0.5 and predicted the presence of M. hirsuta in Bogotá when applying the 10th percentile training presence threshold (Figure 3C and 3D). However, the suitability of the climatic characteristics for this species in Bogotá is low (without Bogotá 0.321, with Bogotá 0.335; Figure 3A and 3B). Our highest supported model without Bogotá shows lower suitability of distribution (0.331, AUC = 0.654) compared with the model including Bogotá, which has slightly higher suitability (0.389, AUC = 0.617).

According to our results and the species’ ecological attributes, we do not support that M. hirsuta inhabits areas near Bogotá and other high-altitude ecosystems. We found that, despite ENMs predicting areas with adequate climatic characteristics for M. hirsuta in high altitudes near Bogotá, it is unlikely to occur due to low suitability of presence in ENMs, previous information of Bogotá bat fauna, and ecological attributes of M. hirsuta.

In our search on bat records from the area of Bogotá, we include surrounding forests from the city above 2,500 m (e. g., Pérez-Torres and Ahumada ٢٠٠٤), and we did not find evidence of the presence of any species of Micronycteris. Our specimen revision and literature records show that M. hirsuta is mainly recorded below 500 m (Patterson et al.1996; Figure 3B). Even this species is still rare in scientific collections, and researchers do not usually capture it (Solari et al. 2019; Costa et al. 2020; Silva et al. 2020a, 2020b), M. hirsuta shows an extensive distribution in a variety of biogeographic areas and ecosystems below the 1,500 m corroborated by our ENMs results.

Our ENMs support the presence of a few amounts of suitable dispersed habitat for this species in the high altitudes of Bogotá, predicting that principally the lowlands surrounding the Bogotá savanna provide the continuous, suitable conditions for the presence of M. hirsuta. Some ecological attributes of the species cast doubt on ENMs predictions. For instance, the bat species that inhabit lowlands can occasionally reach high elevations have some characteristics such as high independence of continuous forest, often use underground roost, and their geographical ranges comprise high southern latitudes (de Carvalho et al. 2019). Contrary, M. hirsuta does not exhibit these characteristics because it shows a high dependence on continuous forest (Williams and Genoways 2008), and the most meridional record of the species is in the Atlantic forest in southeastern Brazil (Esbérard 2004). However, these populations probably correspond to an undescribed species (Ribas et al. 2013).

Additionally, M. hirsuta prefers undisturbed forests with no evidence of generalist habits (Williams and Genoways 2008; Medellín et al. 2000). The impact that urbanization has on bats has been defined as species-specific (Russo and Ancillotto 2015), showing that some are better adapted to city conditions while others avoid cities entirely. Highways have strong barrier effects on maneuverable, slow-flying bats that forage by gleaning (Kerth and Melber 2009) as M. hirsuta being unlikely that the species tolerate urban conditions.

Alternative hypotheses to explain this record include a possible migration of the species from lower altitudes. In tropical regions, there is evidence of altitudinal migrations in several bat species (McGuire and Boyle 2013). For Colombia, some species of the Phyllostomidae family might migrate attitudinally (Naranjo and Amaya 2009). Other species, like the vespertilionid (Vespertilionidae) Aeorestes cinereus, make altitudinal migrations on the Andes’ western slopes (Sanborn and Crespo 1957). Although there is still an important lack of information on this behavior, there is no indication or consistent evidence of altitudinal migrations in M. hirsuta, or any other species of Micronycteris. Probably because some species in this genus have been attributed to having small home ranges (e. g., Micronycteris microtis home range of 1 to 5 ha) and tend to remain in forest patches before venturing across open areas (Fleming et al. 1972; Albrecht et al. 2007; Geipel et al. 2013).

Another hypothesis is accidental transportation by a vehicle. Other authors have proposed this possibility for bat species’ unexpected findings in other localities in the Neotropics (Tamsitt et al. 1964; Jarrin 2003; Morales-Martínez and Henao-Cárdenas 2015); this hypothesis might be possible if we consider the high vehicular traffic from the lowlands towards the city.

Our results suggest that the specimen ICN 24849 was accidentally transported from the lowlands to Bogotá. We strongly recommend the revision of verified identification records and the use of ENMs as a valuable tool to test the suitability of the presence of suspect records, especially of species that are threatened and poorly known. Since the specimen was found and delivered to us by a citizen, it reflects the importance of participatory science to gather species information, mainly in understudied places.

Acknowledgements

We want to thank P. Kamila Guerrero García and L. Pinillos Collazos, who rescued the specimen from the street, informed about it, and delivered it to DM-M. We thank all the scientific collections that DMM-M visited and J. Betancur for the photographic equipment loan. We thank the reviewers for their valuable comments that helped to improve the final version.

Literature cited

Aiello‐Lammens, M. E., R. A. Boria, A. Radosavljevic, B. Vilela, and R. P. Anderson. 2015. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38:541-545.

Akaike, H. 1973. Information theory as an extension of the maximum likelihood principle. Second International Symposium on Information Theory (Petrov, B., and F. Csaki, eds.). Akademiai Kiado. Budapest.

Akaike, H. 1998. Information theory and an extension of the maximum likelihood principle. Selected papers of Hirotugu Akaike. Springer. New York, U.S.A.

Albrecht, L., C. F. Meyer, and E. K. Kalko. 2007. Differential mobility in two small phyllostomid bats, Artibeus watsoni and Micronycteris microtis, in a fragmented neotropical landscape.  Acta Theriologica ٥٢:١٤١-١٤٩.

Andersen, K. 1906. On the bats of the genera Micronycteris and Glyphonycteris. Annals and Magazine of Natural History 7:50-65.

Anderson, D., and K. Burnham. 2004. Model selection and multi-model inference. Springer-Verlag. New York, U.S.A.

Arita, H. T. 1993. Rarity in Neotropical bats: correlations with phylogeny, diet, and body mass. Ecological Applications 3:506-517.

Bivand, R., C. Rundel, E. Pebesma, R. Stuetz, K. O. Hufthammer, and M. R. Bivand. 2017. Package ‘rgeos’. The Comprehensive R Archive Network (CRAN).

Burnham, K. P., and D. R. Anderson. 2004. Multimodel Inference: Understanding AIC and BIC in Model Selection. Sociological Methods & Research 33:261-304.

Castaño, J. H., Y. M. Saba, J. E. Botero, and J. H. Vélez. 2003. Mamíferos del departamento de Caldas-Colombia. Biota Colombiana 4:247-259.

Costa, A., B. Silva, G. Jiménez-Navarro, S. Barreiro, N. Melguizo-Ruiz, J. Rodríguez-Pérez, S. Vasconcelos, P. Beja, F. Moreira, and J. M. Herrera. 2020. Structural simplification compromises the potential of common insectivorous bats to provide biocontrol services against the major olive pest Prays oleae. Agriculture, Ecosystems & Environment 287:106708.

De Carvalho, W. D., M. A. Martins, C. E. Esbérard, and J. M. Palmeirim. 2019. Traits that allow bats of tropical lowland origin to conquer mountains: bat assemblages along elevational gradients in the South American Atlantic Forest. Journal of Biogeography 46:316-331.

Esbérard, C. E. 2004. Novo registro de Micronycteris hirsuta (Peters) (Mammalia, Chiroptera, Phyllostomidae) na Mata Atlântica, Estado do Rio de Janeiro, Brasil. Revista Brasileira de Zoologia ٢١:٤٠٣-٤٠٤.

Fenton, M. B., L. Acharya, D. Audet, M. B. C. Hickey, C. Merriman, M. K. Obrist, and D. M. Syme. 1992. Phyllostomid bats (Chiroptera: Phyllostomidae) as indicators of habitat disruption in the Neotropics. Biotropica 24:440-446.

Ferreira, D. F., R. Rocha, A. López‐Baucells, F. Z. Farneda, J. M. Carreiras, J. M. Palmeirim, and C. F. Meyer. 2017. Season‐modulated responses of Neotropical bats to forest fragmentation.  Ecology and Evolution 7:4059-4071.

Fick, S. E., and R. J. Hijmans. 2017. WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. International Journal of Climatology 37:4302-4315.

Fleming, T. H., E. T. Hooper, and D. E. Wilson. 1972. Three Central American bat communities: structure, reproductive cycles, and movement patterns. Ecology 53:555-569.

Geipel, I., K. Jung, and E. K. Kalko. 2013. Perception of silent and motionless prey on vegetation by echolocation in the gleaning bat Micronycteris microtis. Proceedings of the Royal Society B: Biological Sciences 280:20122830.

Handley, C. O. 1978. Mammals of the Smithsonian Venezuelan project. Brigham Young University Science Bulletin, Biological Series 20:1.

Hernández-Camacho, J., A. Hurtado, R. Ortiz, and T. Walschburger. 1992. Unidades biogeográficas de Colombia. La Diversidad Biológica de Iberoamérica. Acta Zoológica Mexicana 1:105-151.

Hijmans, R. J., S. Phillips, J. Leathwick, J. Elith, and M. R. J. Hijmans. 2017. Package ‘dismo’. Circles 9:1-68.

Jarrin, V. P. 2003. An unusual record of Peropteryx macrotis (Chiroptera: Emballonuridae) in the Andean highlands of Ecuador. Mammalia 67:613-616.

Kass, J. M., B. Vilela, M. E. Aiello-Lammens, R. Muscarella, C. Merow, and R. P. Anderson. 2018. WALLACE: A flexible platform for reproducible modeling of species niches and distributions built for community expansion. Methods in Ecology and Evolution 9:1151-1156.

Kerth, G., and M. Melber. 2009. Species-specific barrier effects of a motorway on the habitat use of two threatened forest-living bat species. Biological Conservation 142:270-279.

McCain, C. M. 2006. Could temperature and water availability drive elevational species richness patterns? A global case study for bats.  Global Ecology and Biogeography 16:1-13.

McGuire, L. P., and W. A. Boyle. 2013. Altitudinal migration in bats: evidence, patterns, and drivers. Biological Reviews 88:767-786.

Mantilla-Meluk, H., A. M. Jimenéz-Ortega, and R. J. Baker. 2009. Phyllostomid bats of Colombia: Annotated checklist, distribution, and biogeography. Texas Tech University Press 56:1-37.

Medellín, R. A., M. Equihua, and M. A. Amin. 2000. Bat diversity and abundance as indicators of disturbance in Neotropical rainforests. Conservation Biology 14:1666-1675.

Morales-Martínez, D. M., and M. M. Henao-Cárdenas. 2015. Primer registro y extensión altitudinal de Choeroniscus godmani (Chiroptera: Phyllostomidae) para el casco urbano de Bogotá D. C., Colombia. Mammalogy Notes 2:16-18.

Morales-Martínez, D. M., and H. E. Ramírez-Chaves. 2015. The distribution of bats of genus Lasiurus (Vespertilionidae) in Colombia, with notes on taxonomy, morphology and ecology. Caldasia 37:397-408.

Morales-Martínez, D. M., M. A. Camacho, and S. F. Burneo. 2018. Distribution and morphometric variation of Micronycteris schmidtorum (Sanborn, 1935) (Chiroptera: Phyllostomidae) in North South America with the first record from Ecuador. Mastozoología Neotropical 25:391-398.

Muscarella, R., J. P. Galante, M. Soley‐Guardia, R. A. Boria, J. M. Kass, M. Uriarte, and R. P. Anderson. 2014. ENM eval: An R package for conducting spatially independent evaluations and estimating optimal model complexity for Maxent ecological niche models. Methods in Ecology and Evolution 5:1198-1205.

Naranjo, L. G., and J. D. Amaya. 2009. Plan Nacional de las especies migratorias.  Diagnóstico e identificación de acciones para la conservación y el manejo sostenible de las especies migratorias de la biodiversidad en Colombia. Ministerio de Ambiente, Vivienda y Desarrollo Territorial, WWF-Colombia. Bogotá D. C., Colombia.

Patterson, B. D., V. Pacheco, and S. Solari. 1996. Distribution of bats along an elevational gradient in the Andes of south‐eastern Peru. Journal of Zoology 240:637-658.

Pebesma, E., R. Bivand, B. Rowlingson, V. Gomez-Rubio, R. Hijmans, M. Sumner, D. MacQueen, J. Lemon, and J. O´Brien. 2005. S classes and methods for spatial data: the sp package.  R news 5:9-13.

Pérez-Torres, J., and J. A. Ahumada. 2004. Murciélagos en bosques alto-andinos, fragmentados y continuos, en el sector occidental de la sabana de Bogotá (Colombia). Universitas Scientiarum 9:33-46.

Phillips, S. J., R. P. Anderson, and R. E. Schapire. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190:231-259.

Phillips, S. J., R. P. Anderson, D. Miroslav, R. E. Schapire, and M. E. Blair. 2017. Opening the black box: An open‐source release of Maxent. Ecography 40:887-893.

Porter, C. A., S. R. Hoofer, C. A. Cline, F. G. Hoffmann, and R. J. Baker. 2007. Molecular phylogenetics of the phyllostomid bat genus Micronycteris with descriptions of two new subgenera. Journal of Mammalogy 88:1205-1215.

Reid, F. A. 2009. A Field Guide to the Mammals of Central America & Southeast Mexico. 2nd edition. Oxford University Press. New York, U.S.A.

Ribas, T. F., L. R. Rodrigues, C. Y. Nagamachi, A. J. Gomes, T. C. Benathar, P. C. O’Brien, F. Yang, M. A. Ferguson-Smith, and J. C. Pieczarka. 2013. Two new cytotypes reinforce that Micronycteris hirsuta Peters, 1869 does not represent a monotypic taxon.  BMC Genetics 14:1-10.

Rodríguez-Posada, M. E., and C. Cárdenas-González. 2012. El Murciélago de Visera Sphaeronycteris toxophyllum Peters, 1882 (Chiroptera: Phyllostomidae) en Colombia. Chiroptera Neotropical 18:1115-1122.

Rojas, D., M. Moreira, M. J. Ramos Pereira, C. Fonseca, and L. M. Dávalos. 2018. Updated distribution maps for neotropical bats in the superfamily Noctilionoidea. Ecology 99:2131-2131.

Russo, D., and L. Ancillotto. 2015. Sensitivity of bats to urbanization: a review. Mammalian Biology 80:205-212.

Sampaio, E., B. Lim, S. Peters, B. Miller, A. D. Cuaron, and P. C. de Grammont. 2016. Micronycteris hirsuta. The IUCN Red List of Threatened Species. http://dx.doi.org/10.2305/IUCN.UK.2016-3.RLTS.T13378A22124582.en. Accessed May 26, 2020.

Sanborn, C. C., and J. A. Crespo. 1957. El murciélago blanquizco (Lasiurus cinereus) y sus subespecies. Museo Argentino de Ciencias Naturales” Bernardino Rivadavia”. Instituto Nacional de Investigación de la Ciencias Naturales 4:13.

Schulze, M. D., N. E. Seavy, and D. F. Whitacre. 2000. A Comparison of the Phyllostomid Bat Assemblages in Undisturbed Neotropical Forest and in Forest Fragments of a Slash‐and‐Burn Farming Mosaic in Petén, Guatemala. Biotropica 32:174-184.

Shamel, H. H. 1927. A new bat from Colombia. Proceedings of Biological Society of Washington 40:129-130.

Silva, R. C., M. Silveira, and R. S. Verde. 2020a. Vertical stratification of phyllostomid bats assemblage (Chiroptera, Phyllostomidae) in a forest fragment in Brazilian Southwestern Amazon. Neotropical Biology and Conservation 15:107-120.

Silva, I., R. Rocha, A. López-Baucells, F. Z. Farneda, and C. F. Meyer. 2020b. Effects of forest fragmentation on the vertical stratification of neotropical bats. Diversity 12:2-15.

Simmons, N. B. 1996. A new species of Micronycteris (Chiroptera, Phyllostomidae) from northeastern Brazil: with comments on phylogenetic relationships. American Museum Novitates 3158.

Simmons, N. B., and R. S. Voss. 1998. The mammals of Paracou, French Guiana, a Neotropical lowland rainforest fauna. Part 1, Bats. Bulletin of the American Museum of Natural History 237:3-218.

Simmons, N. B., R. S. Voss, and D. W. Fleck. 2002. A new Amazonian species of Micronycteris (Chiroptera: Phyllostomidae) with notes on the roosting behavior of sympatric congeners. American Museum Novitates 3358.

Solari, S., Y. Muñoz-Saba, J. V. Rodríguez-Mahecha, T. R. Defler, H. E. Ramírez-Chaves, and F. Trujillo. 2013. Riqueza, endemismo y conservación de los mamíferos de Colombia. Mastozoología Neotropical 20:301-365.

Solari, S., D. Gómez-Ruiz, E. Patiño-Castillo, T. Villada-Cadavid, and C. López. 2019. Bat diversity of the Serranía de San Lucas (Bolívar and Antioquia), northern Colombia. Therya ١١:٦٩-٧٨.

Tamsitt, J. R., D. Valdivieso, and J. Hernández-Camacho. 1964. Bats of the Bogota savanna, Colombia, with notes on altitudinal distribution of Neotropical bats. Revista de Biología Tropical 12:107-115.

Waltari, E., R. J. Hijmans, A. T. Peterson, Á. S. Nyári, S. L. Perkins, and R. P. Guralnick. 2007. Locating Pleistocene Refugia: Comparing Phylogeographic and Ecological Niche Model Predictions. Plos One 2:e563.

Williams, S. L., and H. H. Genoways. 2008. Subfamily Phyllostominae Gray, 1825. Mammals of South America, Vol. 1: Marsupials, Xenarthrans, Shrews, and Bats (Gardner, A. L., ed.). University of Chicago Press. Chicago, U.S.A.

Associated editor: Cristian Kraker-Castañeda

Submitted: November 9, 2020; Reviewed: April 13, 2021.

Accepted: April 21, 2021; Published on line: May 11, 2021.

Appendix 1

List of localities used to make the Ecological Niche Model. Country, locality, geographic coordinates, and source of information; the data with an asterisk correspond to the specimens reviewed in this paper, and we indicate uncatalogued numbers with the letter T (in bold). CTUA: Colección Teriológica Universidad de Antioquia; ICN: Instituto de Ciencias Naturales, Universidad Nacional de Colombia; IAvH: Instituto Alexander von Humboldt; MHNUC: Museo de Historia Natural del Cauca; UV: Universidad del Valle; QCAZ: Museo de Zoología Pontificia Universidad Católica del Ecuador.

Country

Locality

Latitude

Longitude

Source

Colombia

Antioquia: La Frijolera

7° 7' 0.12'' N

75° 25' 0.12'' W

Simmons et al. (2002)

Colombia

Antioquia: Remedios, Vda. Ojos Claros

7° 3' 7.68'' N

74° 18' 17.65'' W

CTUA 2405*

Colombia

Amazonas: La Pedrera

1° 19' 40.87'' S

69° 33' 47.16'' W

ICN-T-ATG 161*

Colombia

Arauca: Tame, Reserva Forestal protectora del río Tame

6° 24' 6.5'' N

71° 56' 35.99'' W

IAvH 9312*

Colombia

Caldas: Municipio Samana, corregimiento San Diego, vda Risaralda

5° 39' 12.41'' N

74° 56' 50.16'' W

Simmons et al. (2002)

Colombia

Caquetá: Río Mesay, PNN Chiribiquete, Puerto Abeja

0° 4' 27'' N

72° 27' 5'' W

IAvH 7155*

Colombia

Cauca: El Tambo, PNN Munchique, Sector El Cóndor

2° 43' 2.99'' N

76° 56' 52.01'' W

MHNUC 814*

Colombia

Cauca: Río Saijá

2° 55' 36.52'' N

77° 33' 52.97'' W

Simmons et al. (2002)

Colombia

Cesar: La Gloria

8° 35' 24.55'' N

73° 34' 19.83'' W

ICN 24461

Colombia

Chocó: Quibdó, Icho

5° 47' 34.69'' N

76° 37' 37.72'' W

CTUA 734*

Colombia

Córdoba: Pueblo Nuevo, Had. La Vaqueta

8° 24' 5'' N

75° 22' 50'' W

ICN 17236*

Colombia

Guajira: Maicao, Serranía del Perijá Carraipía, Pozo San Jonás

11° 15' 24.12'' N

72° 21' 39.01'' W

ICN 19413*

Colombia

Guaviare: San José del Guaviare

2° 31' 31.87'' N

72° 48' 26.89'' W

ICN 23867*

Colombia

Magdalena: Bonda

11° 14' 1.32'' N

74° 7' 29.63'' W

Simmons et al. (2002)

Colombia

Meta: Cubarral, Vda. El Vergel Alto

3° 48' 28.30'' N

73° 52' 51.97'' W

ICN 14393*

Colombia

Meta: Mapiripan

2° 58' 43.06'' N

71° 55' 0.11'' W

ICN 24463*

Colombia

Santander: Puerto Parra

6° 36' 36.82'' N

74° 5' 4.52'' W

ICN-T-D3M541*

Colombia

Valle del Cauca: Buenaventura, Punta Ají, Río Naya

3° 14' 3.72'' N

77° 32' 14.21'' W

UV 11497*

Colombia

Valle del Cauca: Yotoco,Reserva Natural Bosque de Yotoco

3° 49' 60'' N

76° 19' 59.99'' W

ICN 22829*

Ecuador

Esmeraldas: E San Lorenzo (toward Lita), Finca San José

1° 15' 54.50'' N

78° 47' 5.31'' W

Porter et al. (2007)

Ecuador

Esmeraldas: San Lorenzo, La Chiquita Experimental Station

1° 14' 35.19'' N

78° 50' 59.1'' W

Porter et al. (2007)

Ecuador

Esmeraldas: Mataje, Navy Base.

1° 20' 45.6'' N

78° 43' 0.09'' W

Porter et al. (2007)

Ecuador

Pastaza: Arajuno, Villano A

1° 29' 50.80'' S

77° 32' 13.71'' W

QCAZ 15478*

Ecuador

Sucumbíos: Hotería Montetour

0° 1' 39.33'' N

76° 40' 11.81'' W

QCAZ 6943*

Ecuador

Napo: Tena, Jatunsacha Reserva

1° 1' 59.71'' S

77° 39' 37.10'' W

QCAZ 210*

Ecuador

Esmeraldas: San Lorenzo, Estación La Chiquita

1° 13' 59.99'' N

78° 45' 36'' W

QCAZ 9125*

Ecuador

Esmeraldas: San Lorenzo, Mataje, Base Naval

1° 12' 43.70'' N

78° 25' 57.82'' W

QCAZ 9124*

Guyana Francesa

Paracou: near Sinnamary

5° 16' 31.08'' N

52° 55' 24.96'' W

Simmons and Voss (1998)

Panamá

Veraguas: Cerro Hoya, Rio Portobelo

7° 14' 28.38'' N

80° 36' 43.13'' W

Porter et al. (2007)

Perú

Perú: Pasco, Oxapampa, San Juan

9° 53' 3.76'' S

75° 10' 38.40'' W

Simmons (2002)

Perú

Perú: Madre de Dios, left bank Rıo Palotoa

12° 28' 36.17'' S

71° 47' 47.62'' W

Simmons (2002)

Trinidad y Tobago

Trinidad: County St. George

10° 38' 49.2'' N

61° 15' 13.47'' W

Porter et al. (2007)

Trinidad y Tobago

Trinidad: County Mayaro

10° 16' 49.22'' N

61° 1' 46.81'' W

Porter et al. (2007)

Figure 1. Morphological characters of Micronycteris hirsuta (ICN 24849): A) lower incisors: bifid, high crowned, and wedged between canines (see white arrow); B) dermal pads arranged in “V” (see white arrow); C) calcar greater than the foot (see white arrow).

Table 1. Number ID, source (we indicate uncatalogued numbers with the letter T in bold), locality, geographic coordinates, and altitude of the revised specimens of Micronycteris hirsuta in Colombia. ICN: Instituto de Ciencias Naturales, Universidad Nacional de Colombia; CTUA: Colección Teriológica Universidad de Antioquia; IAvH: Instituto Alexander von Humboldt, Villa de Leyva, Colombia; MHNUC: Museo de Historia Natural Universidad del Cauca, Popayán, Colombia; UV: Universidad del Valle, Cali, Colombia.

Number ID

Source

Locality

Geographic coordinates

Altitude (m)

Latitude

Longitude

1

ICN-T-ATG 161

Amazonas: La Pedrera

1° 19' 40.87'' S

69° 33' 47.1'' W

95

2

Simmons et al. (2002)

Antioquia: La Frijolera

7° 7' 0.12” N

75° 25' 0.12'' W

1,500

3

CTUA 2405

Antioquia: Remedios

7° 3' 7.68'' N

74° 18' 17.6'' W

296

4

IAvH 9312

Arauca: Tame

6° 24' 6.5'' N

71° 56' 35.9'' W

792

5

CTUA 750

Atlántico: Santa Catalina

10° 35' 49.1'' N

75° 17' 10.3'' W

103

6

ICN 24849

*Bogotá D.C: Carrera 3 calle 45

4° 38' 17'' N

74° 3' 36'' W

2,600

7

IAvH 7155

Caquetá: río Mesay

0° 4' 27'' N

72° 27' 4.99'' W

250

8

Simmons et al. (2002)

Cauca, río Saijá

2° 55' 36.52'' N

77° 33' 52.9'' W

38

9

MHNUC 814

Cauca: El Tambo

2° 43´ 2.99” N

76° 56´ 52.0”W

1,407

10

ICN 24461

Cesar: La Gloria

8° 35' 24.55'' N

73° 34' 19.8'' W

471

11

CTUA 750

Chocó: Quibdó

5° 47' 34.69'' N

76° 37' 37.7'' W

35

12

ICN 17236

Córdoba: Pueblo Nuevo

8° 24' 5'' N

75° 22' 50'' W

52

13

ICN 19413

Guajira: Maicao

11° 15' 24.1'' N

72° 21' 39.0'' W

105

14

ICN 23867

Guaviare: San José del Guaviare

2° 31' 31.87'' N

72° 48' 26.8'' W

224

15

Simmons et al. (2002)

Magdalena: Bonda

11° 14' 1.32'' N

74° 7' 29.63'' W

65

16

Simmons et al. (2002)

Magdalena: río Don Diego

11° 13' 59.8'' N

74° 7' 59.88'' W

53

17

ICN 24463

Meta: Mapiripan

2° 58' 43.06'' N

71° 55' 0.11'' W

208

18

ICN 14393

Meta: Cubarral

3° 48' 28.30'' N

73° 52' 51.9'' W

941

19

ICN-T-D3M541

Santander: Puerto Parra

6° 36' 36.82'' N

74° 5' 4.52'' W

104

20

UV 11497

Valle: Buenaventura

3° 14' 3.72'' N

77° 32' 14.2'' W

14

21

ICN 22829

Valle del Cauca: Yotoco

3° 52' 40.44'' N

76° 25' 56.9'' W

1,480

Figure 2. Distribution of Micronycteris hirsuta in Colombia: A) records of confirmed localities (circles), where the star corresponds to ICN 24849; B) elevation profile of M. hirsuta in Colombia; C) map of the distribution of Micronycteris hirsuta following Rojas et al. (2018). The dots refer to the localities used to make the Ecological Niche Model (see Appendix 1). The blue star corresponds to ICN 24849.

Table 2. External and skull measurements (mm), including the mean, the observed range (in parentheses), and the sample size of specimens per sex of Micronycteris hirsuta previously recorded in Colombia and external measurements (mm) of the specimen reported in the present study. Abbreviations: total body length (TL), tail length (TV), hind foot length (HF), ear length (EAR), forearm length (FA), greatest length of the skull (GLS), condyloincisive length (CIL), postorbital breadth (PB), braincase breadth (BB), zygomatic breadth (ZB), mastoid breadth (MB), maxillary toothrow length (MTRL), breadth across molars (BAM). ICN: Instituto de Ciencias Naturales, Bogotá, Colombia.

Measurements

Reviewed material

ICN 24849

Males

Females

TL

61.3 (48-75)7

78.3 (78-79)3

-

TV

13.3 (6-20)7

14.7 (14-15) 3

13.0

HF

12.6 (11-17)7

13.3 (11-15)3

11.0

EAR

23.2 (19-33)7

24.3 (22-26)3

20.0

FA

43.4 (40.7-46.2)10

44.2 (41.9-47)3

44.0

GLS

23.8 (22.5-25.0)10

24.0 (23.2-24.9)5

-

CIL

20.9 (20.2-21.6)9

21.1 (20.7-21.6)5

-

PB

5.0 (4.8-5.4)10

5.1 (4.9-5.5)5

-

BB

8.6(8.2-8.9)10

8.7 (8.5-8.9)5

-

ZB

11.4 (10.7-11.8)7

11.7(11.5-12)4

-

MB

10.3 (9.6-10.6)8

10.5(10.1-10.9)5

-

MTRL

9.3 (8.9-9.6)9

9.3 (9.0-9.8)5

-

BAM

4.5(4.3-4.6)10

4.5 (4.3-4.7)5

-

Figure 3. Selected Ecological Niche Model of Micronycteris hirsuta based on AICc support. A and B represent the logistic suitability with and without Bogotá, respectively. The suitability of M. hirsuta is low in both models for the collecting locality of ICN 24849. C and D show the presence-absence distribution map based on the 10th percentile training presence threshold with and without Bogotá, respectively.