THERYA NOTES 2021, Vol. 2 : 125-131 DOI: 10.12933/therya_notes-21-48

The bobcat (Lynx rufus) in the Nayarit Coastal Plain, México: presence, relative abundance and activity patterns

El gato montés (Lynux rufus) en la llanura costera de Nayarit, México: presencia, abundancia relativa y patrones de actividad

Víctor H. Luja1*, Ricardo Rodríguez-Estrella2, Diana J. Guzmán-Báez3, and Luis Jiménez4

1Unidad Académica de Turismo, Universidad Autónoma de Nayarit. Ciudad de la Cultura s/n, C. P. 63000. Tepic, Nayarit, México. E-mail: lujastro@yahoo.com (VHL).

2 Planeación Ambiental y Conservación. Centro de Investigaciones Biológicas del Noroeste, C. P. 23096. La Paz, Baja California Sur, México. E-mail: estrella@cibnor.mx (RR-E).

3Unidad Académica de Agricultura, Universidad Autónoma de Nayarit. Puerto Vallarta - Tepic Compostela, km 9, C. P. 63780. Xalisco, Nayarit, México. E-mail: djgb07@hotmail.com (DJG-B).

4Universidad de la Sierra Juárez. Avenida Universidad s/n, C. P. 68725. Ixtlán de Juárez, Oaxaca, México. E-mail: luisjj191095@gmail.com (LJ).

*Corresponding author

The bobcat, Lynx rufus, is one of the six wild cats that inhabit México. It is distributed from sea level up to 3,600 m, occupying a wide variety of habitats including deserts, mountain ecosystems and wetlands. However, to date, there is no ecological information on the species in coastal wetlands. The general objective of this work is to provide the first ecological information systematically obtained on the bobcat in the Coastal Plain of Nayarit (NCP). We evaluated their historical and current presence, relative abundance, and activity patterns. We determined the historical presence of the bobcat in the NCP through a search of the words using the keywords “Lynx”, “rufus”, “lince”, “bobcat” and “Nayarit” in electronic databases. We implemented the protocol of the National Jaguar Census using camera traps in a 72 km2 area to document the bobcat’s presence, relative abundance, and activity patterns. Through the database search we find 23 bobcat’s records in area of at least 3,000 km2 of the NCP. From our fieldwork we obtained 30 independent records with a relative abundance of 1.28 bobcat photographs / 100 camera days. We documented the presence of at least 10 different individuals, including adults of both sexes, and possibly a pregnant female. Its activity is nocturnal; 40 % of the records occurred between 00:00 - 06:00 hr. The bobcat inhabits the coastal wetlands of Nayarit. The high values of relative abundance suggest a stable population in the NCP with respect to what has been reported in suitable habitats such as temperate forests and scrubs. Its nocturnal activity coincides with other studies on the species. Although, in general, the bobcat adapts well to disturbance generated by human activities, the impacts that these have on their populations in tropical wetlands are unknown. To ensure the permanence of the species, future work is recommended to know in depth its diet, reproduction, home range and genetic connectivity of this species in the tropical wetlands of western México.

Key words: Lynx rufus; presence; species distribution models.

El gato montés, Lynx rufus, es una de las seis especies de felinos silvestres que habitan en México. Se distribuye desde el nivel del mar hasta los 3,600 m, ocupando una gran variedad de hábitats entre los que se encuentran los desiertos, ecosistemas de montaña y humedales. Sin embargo, a la fecha, no existe información ecológica de la especie en humedales costeros. El objetivo general de este trabajo es proveer la primera información ecológica obtenida de forma sistemática sobre el gato montés en la Planicie Costera de Nayarit (PCN). Evaluamos su presencia histórica y actual, su abundancia relativa y patrones de actividad. Determinamos la presencia histórica del gato montés en la PCN mediante una búsqueda en bases de datos electrónicas utilizando las palabras: “Lynx”, “rufus”, “lince”, “bobcat” y “Nayarit”. Implementamos el protocolo del Censo Nacional del Jaguar usando cámaras trampa en un área de 72 km2 para documentar la presencia, distribución, abundancia relativa y patrones de actividad del gato montés. A través de la búsqueda en bases de datos encontramos 23 registros de gato montés en un área de al menos 3,000 km2 de la PCN. A partir de nuestro trabajo de campo obtuvimos 30 registros independientes con una abundancia relativa de 1.28 fotografías de gato montés / 100 días cámara. Documentamos la presencia de al menos 10 individuos diferentes, incluyendo adultos de ambos sexos y una hembra presuntamente embarazada. Su actividad es nocturna; 40 % de los registros ocurrieron entre las 00:00-06:00 hr. El gato montés habita los ecosistemas costeros de Nayarit. Los valores elevados de abundancia relativa sugieren una población estable en la PCN con respecto a lo que ha sido reportada en hábitat ideales para la especie tales como los matorrales y bosques templados. Su actividad nocturna coincide con lo que reportan otros trabajos para la especie. Aunque, en general, el gato montés se adapta bien al disturbio generado por actividades humanas, los impactos que estas tienen sobre sus poblaciones en los humedales costeros aún se desconocen. Para asegurar la permanencia de sus poblaciones es necesario realizar futuros estudios sobre su dieta, reproducción, ámbito hogareño y conectividad genética de la especie en los ecosistemas costeros del occidente de México.

Palabras clave: Lynx rufus; modelos de distribución; presencia.

© 2021 Asociación Mexicana de Mastozoología, www.mastozoologiamexicana.org

The bobcat (Lynx rufus) is one of the 6 wild cats that inhabit México (Ceballos and Oliva 2005). Its geographical distribution extends from the border of the United States of America, including the Baja California Península, both slopes (Pacific and Gulf of México), narrowing towards the Mexican Central Highlands with its southern limit being the state of Oaxaca (Hall 1981; Lariviere and Walton 1997; Phillips et al. 2004; Ceballos et al. 2006; Sánchez-Cordero et al. 2008; Roberts and Crimmins 2010; Monroy-Vilchis et al. 2019). Bobcats are extant in México from sea level up to 3,600 m, occupying a wide variety of habitats including wetlands, deserts and mountain ecosystems (Romero 2005). In all these ecosystems the bobcat is considered a mesopredator (Conner et al. 2001) and therefore are essential for the maintenance of biodiversity and proper-functioning ecosystems (Ripple et al. 2014). Due to the bobcat’s wide distribution, abundance, and adaptability, it is not listed in any threaten category, international or nationally. However, some populations in México are experiencing genetic isolation as a result of habitat fragmentation resulting from human activities that may eventually result in local extinctions (López-González et al. 2015).

Previous studies of bobcats in México have documented diet, abundance and density in desert, semi-desert and temperate ecosystems at intermediate elevations (Delibes et al. 1997; Aranda et al. 2002; Burton et al. 2003; Medellín and Bárcenas 2010; Elizalde-Arellano et al. 2012; López-Vidal et al. 2014; López-González et al. 2015; Sánchez-González et al. 2018), but nothing about coastal wetland populations in the tropics.

In 1903, Allen described a new subspecies of bobcat (L. r. escuinapae) whose type locality is Escuinapa, Sinaloa, located in the Pacific Coastal Plain ecoregion, an extensive area of floodplains and marshes that extend from southern Sinaloa to central Nayarit on the Pacific Coast of México (INEGI 1991). Later, Leopold (1959) included bobcats in a mapped range distribution that included the entire state of Nayarit, with no supporting observational information. Similarly, Hall (1981), included the state of Nayarit within the bobcat’s range. Prior to this study, there has been no data published on bobcats inhabiting the Pacific Coastal Plain. Therefore, our aim in this work was to provide the first ecological information systematically obtained on the bobcat in the Coastal Plain of Nayarit, confirming its presence along this area. We evaluated their historical and current presence, relative abundance, and activity patterns.

The Pacific Coastal Plain is an elongated and narrow plain (it covers a strip of up to 65 km wide), which extends along the coast from Sonora to Nayarit in western México. It is characterized by being an almost flat relief formed by large flood plains, lakes and swamps aligned parallel to the coast (INEGI 1991). Our study area is located within the Nayarit Coastal Plain (NCP), delimited from the north of Nayarit (Municipality of Tecuala) to the Rio Grande de Santiago (Municipalities of Santiago Ixcuintla and San Blas; Figure 1). The camera trapping study was carried out in 72 km2 within the sub-province called “Delta of the Rio Grande de Santiago” (INEGI 1991; Figure 2). The northern limit of the study area was the town of Los Corchos (21° 43’ 57’’ N, 105° 28’ 12’’ W, 3 m; Municipality of Santiago Ixcuintla), south of the mouth of the estuary called “La Boca Cegada” (21° 35’ 46’’ N, 105° 24’ 0’’ W, 0 m; Municipality of San Blas), to the west the Pacific Ocean and to the east the boundary was established at a distance of approximately 6 kilometres from the coastline (Figure 1). The climate is warm and humid with an average annual temperature of 31.7 °C. The predominant native vegetation is the mangrove (Avicennia germinans and Conocarpus erectus) with patches of low deciduous forest, palapar, secondary vegetation, farmland, and livestock land (CONAFOR 2015).

We determined the historical presence of the bobcat in the NCP through an electronic search using the keywords “Lynx”, “rufus”, “lince”, “bobcat” and “Nayarit” in the following databases: Open Data Portal of the Biological Collections of the National Autonomous University of México (IBUNAM 2020); Community of Natural History Collections of Vertebrates (VertNet 2020); and the Citizen science portal of the National Commission for the Knowledge and Use of Biodiversity (Naturalista 2020). Only georeferenced records and those confirmed by experts (in the case of Naturalista) were considered as credible records. Finally, we estimated the total area with a presence of bobcat in the NCP as a convex polygon.

To determine the abundance of the bobcat we used camera trapping methodologies that have previously been applied to other felines (e. g., National Jaguar Census, CENJAGUAR; Chávez et al. 2013). In October 2018, using Google Earth Pro®, a grid was applied to our study area covering an area of 72 km2, which was subsequently then divided into 8 quadrants of 9 km2 each. In each 9 km2 quadrant, 3 sites were selected where a camera trap would potentially be placed. Each site selected was separated by a minimum of 1 km. Between November and December 2018, the previously chosen sites were verified in the field while looking for evidence of feline sign (footprints, scrapes). A total of 24 sites (stations) were selected where camera traps were then placed (Figure 2). We used Cuddeback® Model Color C1 (Non Typical, Inc., Park Falls, WI) camera traps. We placed 17 single-camera stations and 7 double-camera (2 cameras at the same point, 1 on the opposite side of the other) stations. Cameras were attached to trees 35 to 50 cm above ground level and were placed perpendicular to wildlife passages (Chávez et al. 2013). Cameras remained active for 60 days during each sampling session (February-March, 2019 and February-March, 2020).

The resulting images were stored and classified using the methodology proposed by Harris et al. (2010). Relative abundance was calculated using the Relative Abundance Index (RAI) using the formula proposed by Maffei et al. (2004) and Jenks et al. (2011): RAI = (C / SE) x 100 where C = number of photographic captures, SE = sampling effort (number of cameras per monitoring day) per unit of time and per 100 camera days (standard correction factor). Naïve occupancy was calculated, which is defined as the proportion of cameras in which a species is registered in relation to the total number of cameras used during monitoring (O’Connell and Bailey 2011). The minimum number of individuals was determined from the identification of each individual by comparing their spot patterns, scars, sex and body sizes (Heilbrun et al. 2006). In all cases, at least three natural characteristics were used for the recognition of the same animal (comparing, for example, tail stripes, scars or facial marks on the same flank). Finally, the daily activity patterns were obtained using the Overlap package (Ridout and Linkie 2009) of the computational language R (R Core Team 2013).

We obtained 23 bobcats reported records for the NCP; all records come from CONABIO’s Naturalist citizen science portal. The oldest record is from 2009 and the most recent from 2019. Table 1 presents the data from all bobcat records, including those obtained in this study during 2019 and 2020.

The sampling effort during this study was 2,740 camera days (2019: 1,367; 2020: 1,373). A total of 43 bobcat photographs were obtained derived of our fieldwork (Figure 2). Of these, 30 were determined to be independent records (photographs of the same species in the same station within a period greater than 60 minutes) and were used in the abundance and activity analysis. Bobcats were recorded in 8 of 25 stations, with a naïve occupancy of 0.32 (32 %) and a relative abundance of 1.28 bobcat photographs / 100 camera days. It was possible to identify at least 10 different individuals (6 females, 1 male and 3 unidentified). Of the 30 independent records obtained, 12 (40 %) occurred between 00:00-06:00 hr, 9 (30 %) between 06:00-18:00 hr, and 9 (30 %) between 18:00-00:00 hr (Figure 3).

Having reliable information to understand the distribution patterns of a species at different scales is useful for both biogeography and conservation (Chefaoui and Lobo 2008). Our results confirmed what was proposed historically by Allen (1903), Leopold (1959) and Hall (1981), who all stated the range of the bobcat included the NCP, where it is rather a common species.

Using a camera trap methodology, we documented for the first time the presence of at least 10 different individuals, including adults of both sexes, and possibly a pregnant female in a coastal wetland located in Nayarit. The relative abundance index obtained in this work (1.28 bobcat photographs / 100 camera days), is similar, for example, to that reported for the bobcat in coniferous forests in Virginia, USA (1.36; Kelly and Holub 2008), and in Tlaxcala, México (1.27; Flores-Morales et al. 2019). It is even higher than at sites defined in the species distribution models as ideal ecosystem for the species, such as Sierra Gorda in Guanajuato, where relative abundance values of 0.15 were reported in submontane scrub and 0.09 in pine-oak forest (Charre-Medellín et al. 2016). The high values of relative abundance are indicative of a stable population of the bobcat in the NCP with respect to what has been reported in suitable habitats for the species, such as temperate forests and scrubs. Our records are remarkable since the study area is highly fragmented and with patches of mangroves of different sizes connected by secondary vegetation. It is known the bobcat is tolerant and adaptable to some man-made environments, especially males and young bobcats as females had low levels of modified association which posteriorly affects the population viability (Riley et al. 2003). In addition, the threshold on habitat loss and fragmentation is in general unknown for the species although a study found that bobcats may occur in fragmented sites but not in small and isolated sites (Crooks 2002) while others found this mammal can show a higher degree of adaptation (Riley et al. 2003). It is strongly recommended to accounting for landscape connectivity as it is key for management of bobcat populations across fragmented landscapes (Jacques et al. 2019).

In general, the activity of the bobcat in the NCP is consistent with the activity that has been registered in populations from other ecosystems where they are extant: 30 % of the records correspond to daytime activity, and 70 % to twilight-night activity (Anderson and Lovallo 2003; Elizalde-Arellano et al. 2014; Flores-Morales et al. 2019; Serna-Lagunes et al. 2019).

The wetlands of the Coastal Plain of Nayarit face serious threats that endanger the permanence of the wildlife that inhabits them (Luja et al. 2017), among which is the bobcat. Deforestation for agriculture, livestock and, more recently, the boom in the establishment of shrimp farms, fragment the habitat and generate unfavourable encounters with humans. Although, in general, the bobcat adapts well to disturbance generated by human activities, the impacts that these have on their populations in tropical wetlands are unknown. To ensure the permanence of the species, future work is recommended to know in depth its diet, reproduction, home range and genetic connectivity of this species in the tropical wetlands of western México.

Acknowledgements

We thank P. Virgen, R. Virgen, I. Vallarta, M. Zamudio, D. Guzmán, A. Ponce, L. Ramírez and other people who collaborated in the field work. To R. Thompson, for editing the English and for his comments substantially improved the content of this manuscript. This work was possible thanks to funds granted by the National Council of Science and Technology (CONACyT) for project 3369 “Ecology and Conservation of the jaguar (Panthera onca) and its potential prey outside the Natural Protected Areas of Nayarit, México". We also thank M. Cortés for his support in the production of maps, and two anonymous reviewers that improve the manuscript.

Literature cited

Allen, J. A. 1903. A new deer and a new Lynx from the state of Sinaloa, Mexico (Vol. 19). By Order of the Trustees of the American Museum of Natural History. New York, U.S.A.

Anderson, E. M., and M. Lovallo. 2003. Bobcat and Lynx. Pp. 758-786 in Wild mammals of North America: biology, management and conservation (Feldhamer, G. A., B. C. Thompson, and J. A. Chapman, eds.). The Johns Hopkins University Press. Baltimore, U.S.A.

Aranda, M., O. Rosas, J. D. J. Ríos, and N. García. 2002. Análisis comparativo de la alimentación del gato montés (Lynx rufus) en dos diferentes ambientes de México. Acta Zoológica Mexicana 87:99-109.

Burton, A. M., S. N. Pérez, and C. Tovar. 2003. Bobcat ranging behavior in relation to small mammal abundance on Colima Volcano, Mexico. Anales del Instituto de Biología. Serie Zoología 74:67-82.

Ceballos, G., and G. Oliva. 2005. Los mamíferos silvestres de México. Fondo de Cultura Económica. México City, México.

Ceballos, G., S. Blanco, C. Gonzales, and E. Martínez. 2006. Lynx rufus (lince, gato montés). Distribución potencial, escala 1:1000000. Instituto de Biología, Universidad Nacional Autónoma de México. México City, México.

Comisión Nacional Forestal (CONAFOR). 2015. Inventario estatal forestal y de suelos-Nayarit 2014. Secretaría de Medio Ambiente y Recursos Naturales. México City, México.

Conner, L. M., B. D. Leopold, and M. Chamberlain. 2001. Multivariate habitat models for bobcats in southern forested landscapes. Pp. 51–55 in Proceedings of the Symposium on Current Bobcat Research and Implications for Management. The Wildlife Society 2000 Conference (Woolf, A., C. K. Nielsen, and R. D. Bluett, eds.). Carbondale, Illinois, Southern Illinois University, U.S.A.

Crooks, K. R. 2002. Relative sensitivities of mammalian carnivores to habitat fragmentation. Conservation Biology 16:488-502.

Charre-Medellin, J. F., G. Magaña-Cota, T. C. Monterrubio-Rico, R. Tafolla-Muñoz, J. L. Charre-Luna, and F. Botello. 2016. Mamíferos medianos y grandes del municipio de Victoria, Reserva de la Biosfera Sierra Gorda Guanajuato, México. Acta Universitaria 26:62-70.

Chávez, C., A. De la Torre, H. Bárcenas, R. A. Medellín, H. Zarza, and G. Ceballos. 2013. Manual de fototrampeo para estudio de fauna silvestre. El jaguar en México como estudio de caso. Alianza WWF-Telcel, Universidad Nacional Autónoma de México. México City, México.

Chefaoui, R. M., and J. Lobo. 2008. Assessing the effects of pseudo-absences on predictive distribution model performance. Ecological Modelling 210:478-486.

Delibes, M., S. C. Zapata, M. C. Blázquez, and R. Rodríguez-Estrella. 1997. Seasonal food habits of bobcats (Lynx rufus) in subtropical Baja California Sur, Mexico. Canadian Journal of Zoology 75:478-483.

Elizalde-Arellano, C., J. C. López-Vidal, L. Hernández, J. W. Laundré, F. A. Cervantes, and M. Alonso-Spilsbury. 2012. Home range size and activity patterns of bobcats (Lynx rufus) in the southern part of their range in the Chihuahuan Desert, Mexico. The American Midland Naturalist 168:247-264.

Elizalde-Arellano, C., J. C. López-Vidal, L. Hernández, J. W. Laundré, F. A. Cervantes, F. M. Morales-Mejìa, M. Ramìrez-Vargas, L. F. Dávila-Galaviz, A. González-Romero, and M. Alonso-Spilsbury. 2014. Registros de presencia y actividades de algunos mamíferos en el Desierto Chihuahuense, México. Therya 5:793-816.

Flores-Morales, M., J. Vázquez, A. Bautista, L. Rodríguez-Martínez, and O. Monroy-Vilchis. 2019. Response of two sympatric carnivores to human disturbances of their habitat: the bobcat and coyote. Mammal Research 64:53-62.

Hall, R. E. 1981. The mammals of North America. John Wiley and Sons. New York, U.S.A.

Harris, G., R. Thompson, J. L. Childs, and J. Sanderson. 2010. Automatic Storage and Analysis of Camera Trap Data. Bulletin of the Ecological Society of America 91:352-360.

Heilbrun, R. D., N. J. Silvy, M. J. Peterson, and M. Tewes. 2006. Estimating Bobcat Abundance Using Automatically Triggered Cameras. Wildlife Society Bulletin 34:69-73.

Instituto de Biología, Universidad Nacional Autónoma de México (IBUNAM). 2020. Lynx rufus. Departamento de Zoología, Instituto de Biología, Universidad Nacional Autónoma de México. México. http://datosabiertos.unam.mx/ibunam. Downloaded on April 15, 2020.

Instituto Nacional de estadística y Geografía (INEGI). 1991. Características edafológicas, fisiográficas, climáticas e hidrográficas de México. Instituto Nacional de Geografía Estadística e Informática. México City, México.

Jacques, C. N., R. W. Klaver, T. C. Swearingen, E. D. Davis, J. A. Jenks, C. S. Deperno, and R. D. Bluett. 2019. Estimating density and detection of Bobcats in fragmented Midwestern Landscapes using Spatial Capture–Recapture data from camera traps. Wildlife Society Bulletin 43:256-264.

Jenks, K. E., P. Chanteap, K. Damrongchainarong, P. Cutter, P. Cutter, T. Redford, A. Lynam, J. Howard, and P. Leimgruber. 2011. Using Relative Abundance Indices from Camera-Trapping to Test Wildlife Conservation Hypotheses – An Example from Khao Yai National Park, Thailand. Tropical Conservation Science 4:113-131.

Kelly, M. J., and E. Holub. 2008. Camera trapping of carnivores: trap success among camera types and across species, and habitat selection by species, on Salt Pond Mountain, Giles Country, Virginia. Northeast Naturalist 15:249-262.

Lariviere, S., and L. Walton. 1997. Lynx rufus. Mammalian Species. 563:1-8.

Leopold, A. S. 1959. Fauna silvestre de México. Editorial Pax. México City, México.

López-González, C. A., D. Ávila-Aguilar, and M. Cruz-Torres. 2015. Bobcat Abundance (Lynx rufus escuinapae J. A. Allen, 1903) in the Parque Nacional El Cimatario, Querétaro, México. Acta Zoológica Mexicana 31:138-140.

López-Vidal, J. C., C. Elizalde-Arellano, L. Hernández, J. W. Laundré, A. González-Romero, and F. A. Cervantes. 2014. Foraging of the bobcat (Lynx rufus) in the Chihuahuan Desert: generalist or specialist? The Southwestern Naturalist 59:157-166.

Luja, V. H., C. J. Navarro, L. A. Torres Covarrubias, M. Cortés Hernández, and I. L. Vallarta Chan. 2017. Small protected areas as stepping-stones for jaguars in western Mexico. Tropical Conservation Science 10, 1940082917717051.

Maffei, L., E. Cullar, and A. Noss. 2004. One thousand jaguars (Panthera onca) in Bolivias Chaco? Camera trapping in the Kaa-Iya National Park. Journal of Zoology 262:295-304.

Medellín, R. A., and H. Bárcenas. 2010. Estimación de la densidad poblacional y dieta del gato montés (Lynx rufus) en Aguascalientes y el Distrito Federal, México. Universidad Nacional Autónoma de México. Instituto de Ecología. Final report SNIB-CONABIO proyect es003. México City, México. http://www.conabio.gob.mx/institucion/proyectos/resultados/InfES009.pdf

Monroy-Vilchis, O., Z. Zarco-González, and M. Zarco-González. 2019. Potential distribution and areas for conservation of four wild felid species in Mexico: Conservation planning. Mammalian Biology 98:128-136.

Naturalista. 2020. Portal de ciencia ciudadana de la Comisión Nacional para el Conocimiento y Uso de la Biodiversidad (CONABIO). www.naturalista.mx. Downloaded on April 4, 2020.

O’Connell, A. F., and L. Bailey. 2011. Inference for occupancy and occupancy dynamics. Pp. 191-204 in Camera traps in animal ecology (O’Connell, A. F., J. D. Nichols, and K. Ullas, eds.). Springer, Japan.

Phillips, S. J., M. Dudík, and R. Schapire. 2004. A maximum entropy approach to species distribution modeling. Proceedings of the twenty-first international conference on Machine learning. Banff, Alberta, Canadá.

R Core Team. 2013. R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria.

Ridout, M. S., and M. Linkie. 2009. Estimating overlap of daily activity patterns from camera trap data. Journal of Agricultural, Biological, and Environmental Statistics 14:322-337.

Riley, S. P. D., R. M. Sauvajot, T. K. Fuller, E. C. York, D. A. Kamradt, C. Bromley, and R. K. Wayne. 2003. Effects of urbanization and habitat fragmentation on Bobcats and Coyotes in Southern California. Conservation Biology 17:566-576.

Ripple, W. J., J. A. Estes, R. L. Beschta, C. C.Wilmers, E. G. Ritchie, M. Hebblewhite, J. Berger, B. Elmhagen, M. Letnic, M. Nelson, O. Schmitz, D. Smith, A. Wallach, and A. Wirsing. 2014. Status and Ecological Effects of the World’s Largest Carnivores. Science 343:1241484-1241484.

Roberts, N. M., and S. Crimmins. 2010. Bobcat Population Status and Management in North America: Evidence of Large-Scale Population Increase. Journal of Fish and Wildlife Management 1:169-174.

Romero, F. R. 2005. Lynx rufus (Schreber, 1777). Pp. 362-364 in Los Mamíferos Silvestres de México (Ceballos, G., and G. Oliva, eds.). Comisión Nacional para el Conocimiento y Uso de la Biodiversidad y Fondo de Cultura Económica. México City, México.

Sánchez-Cordero, V., D. Stockwell, S. Sarkar, H. Liu, C. R. Stephens, and J. Jiménez. 2008. Competitive interactions between felid species may limit the southern distribution of bobcats Lynx rufus. Ecography 31:757-764.

Sánchez-González, R., A. D. Hernández-Saint Martin, O. C. Rosas Rosas, and J. García-Chávez. 2018. Diet and Abundance of Bobcat (Lynx rufus) in the Potosino-Zacatecano Plateau, Mexico. Therya 9:107-112.

Serna-Lagunes, R., L. R. Álvarez-Oseguera, D. M. Ávila-Nájera, R. Leyva-Ovalle, P. Andrés-Meza, and T. Pablo Barbara. 2019. Temporal overlap in the activity of Lynx rufus and Canis latrans and their potential prey in the Pico de Orizaba National Park, Mexico. Animal Biology Conservation 42.1:153-161.

VertNet. 2020. National Science Foundation. Where discoveries begin. https://portal.vertnet.org/search?q=Lynx+ rufus+Nayarit. Downloaded on April 4, 2020.

Associated editor: Arturo Carrillo-Reyes

Submitted: September 16, 2020; Reviewed: August 2, 2021.

Accepted: September 13, 2021; Published on line: October 6, 2021.

Figure 1. A) Map showing the layer generated by Comisión Nacional para el Conocimiento y uso de la Biodiversidad (CONABIO) with the potential distribution of the bobcat (1-2 low; 8-10 high presence probability), excluding the Nayarit Coastal Plain (blue line), México. The coordinates with the historical records (yellow triangles) and the location of the camera traps (green stars) where the bobcat was photographed in 2019 and 2020 for this study are shown. B) Location of the 24 camera trap stations in the Nayarit Coastal Plain used for monitoring in January-February 2019 and 2020. The red triangles show the presence of bobcat in the Nayarit Coastal Plains, México.

Table 1. Bobcat (Lynx rufus) records obtained from electronic database searches. All the records were found on the Citizen science portal of the National Commission for the Knowledge and Use of Biodiversity (Naturalista 2020). The records product of the field work of the present study are presented in bold.

Source

Collection type

Date (year/month/day)

Geographical coordinates

This study

Camera trap photo

2020/03/18

21° 43’ 57.73” N, 105° 26’ 50.77” W

This study

Camera trap photo

2020/02/27

21° 41’ 59.65” N, 105° 26’ 25.85” W

This study

Camera trap photo

2020/02/24

21° 40’ 51.57” N, 105° 27’ 09.99” W

This study

Camera trap photo

2020/02/02

21° 42’ 45.98” N, 105° 26’ 51.34” W

This study

Camera trap photo

2020/01/29

21° 43’ 19.89” N, 105° 26’ 42.49” W

Naturalista

Footprint photo

2019/11/07

22° 12’ 31.43” N, 105° 27’ 22.60” W

Naturalista

Footprint photo

2019/11/07

22° 12’ 28.28” N, 105° 27’ 10.24” W

This study

Camera trap photo

2019/03/25

21° 40’ 19.28” N, 105° 26’ 52.42” W

This study

Camera trap photo

2019/03/17

21° 42’ 31.76” N, 105° 28’ 10.94” W

This study

Camera trap photo

2019/02/04

21° 42’ 17.61” N, 105° 26’ 49.51” W

Naturalista

Lynx in wildlife photo

2015/11/24

21° 55’ 00.94” N, 105° 17’ 54.44” W

Naturalista

Camera trap photo

2011/11/26

22° 09’ 25.12” N, 105° 29’ 24.19” W

Naturalista

Camera trap photo

2011/11/16

22° 20’ 43.09” N, 105° 24’ 58.65” W

Naturalista

Camera trap photo

2011/10/13

22° 17’ 16.10” N, 105° 25’ 57.92” W

Naturalista

Camera trap photo

2011/08/25

22° 01’ 08.43” N, 105° 32’ 45.09” W

Naturalista

Camera trap photo

2011/08/13

22° 02’ 16.31” N, 105° 34’ 07.29” W

Naturalista

Camera trap photo

2011/07/31

22° 02’ 13.71” N, 105° 35’ 56.63” W

Naturalista

Camera trap photo

2011/07/30

22° 03’ 08.74” N, 105° 25’ 31.73” W

Naturalista

Camera trap photo

2011/07/30

22° 19’ 07.80” N, 105° 32’ 57.93” W

Naturalista

Camera trap photo

2011/07/30

22° 14’ 24.04” N, 105° 32’ 13.72” W

Naturalista

Camera trap photo

2011/07/11

22° 13’ 06.40” N, 105° 33’ 41.17” W

Naturalista

Camera trap photo

2011/05/03

21° 42’ 45.18” N, 105° 28’ 28.07” W

Naturalista

Camera trap photo

2010/03/23

21° 47’ 36.65” N, 105° 27’ 44.68” W

Naturalista

Camera trap photo

2010/01/23

22° 17’ 41.65” N, 105° 28’ 29.14” W

Naturalista

Camera trap photo

2010/01/10

22° 22’ 09.35” N, 105° 35’ 21.21” W

Naturalista

Camera trap photo

2009/11/16

22° 24’ 00.21” N, 105° 28’ 33.12” W

Naturalista

Camera trap photo

2009/12/20

22° 23’ 39.66” N, 105° 39’ 12.04” W

Naturalista

Camera trap photo

2009/11/02

22° 16’ 15.23” N, 105° 24’ 19.30” W

Naturalista

Camera trap photo

2009/08/24

21° 54’ 39.89” N, 105° 18’ 16.49” W

Naturalista

Camera trap photo

2009/08/22

21° 57’ 00.93” N, 105° 31’ 00.46” W

Naturalista

Fecal sample photo

2009/06/03

21° 44’ 38.80” N, 105° 27’ 02.08” W

Figure 2. A bobcat, Lynx rufus, photographed on March 18, 2020 in a mangrove-tropical deciduous forest-farmlands ecotone in the Nayarit Coastal Plains, México.

Figure 3. Histogram that shows the activity patterns, from 30 independent photographs, of the bobcat, Lynx rufus, in the Nayarit Coastal Plains, México.