THERYA NOTES 2024, Vol. 5 : 92-102 DOI: 10.12933/therya_notes-24-156 ISSN 2954-3614

First record of Coxiella sp. in Ornithodoros hasei parasitizing Rhogeessa tumida in México

Primer registro de Coxiella sp. en Ornithodoros hasei parasitando a Rhogeessa tumida en México

Estefanía Grostieta1, Sebastián Muñoz-Leal2, Héctor M. Zazueta-Islas1, Marlene Solís-Cortés1, Fernanda Flores-Vázquez1, Gerardo G. Ballados-González3, Pablo Colunga-Salas1,4, Ingeborg Becker1, Juan Manuel Pech-Canché5, and Sokani Sánchez-Montes1,5*

1Centro de Medicina Tropical, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México. Dr. Balmis 148, C. P. 06726, Ciudad de México. Ciudad de México, México. E-mail: estefania.grostieta@ciencias.unam.mx (E-G); manuzazueta@ciencias.unam.mx (HM-ZI); marlenesolis@ciencias.unam.mx (M-SC); ferflores@ciencias.unam.mx (F-FV); becker@unam.mx (I-B).

2Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción. Av. Vicente Méndez 595, Chillán. Concepción, Chile. E- mail: sebamunoz@udec.cl (S-ML).

3Facultad de Medicina Veterinaria y Zootecnia, Universidad Veracruzana. Miguel Ángel de Quevedo s/n, esq. Yáñez, C. P. 91710, Veracruz. Veracruz, México. E-mail: balladosgerardo506@hotmail.com (GG-BG).

4Instituto de Biotecnología y Ecología Aplicada, Universidad Veracruzana. Campus para la Cultura, las Artes y el Deporte, Cultura Veracruzana No. 101, Emiliano Zapata, C. P. 91090, Xalapa de Enríquez. Veracruz, México. E-mail: pcolunga@uv.mx (P-CS).

5Facultad de Ciencias Biológicas y Agropecuarias región Poza Rica-Tuxpan, Universidad Veracruzana. Carretera Tuxpan Tampico Kilómetro 7.5 Universitaria, C. P. 92870, Tuxpan de Rodríguez Cano. Veracruz, México. E-mail: jmpech@uv.mx (JM-PC); sok10108@gmail.com (S-SM).

*Corresponding author

Soft ticks represent a neglected group of ectoparasites associated with a wide range of vertebrates. In México, 24 species have been reported, the majority parasitizing bats. Several species are competent vectors of a wide range of pathogenic microorganisms. For this reason, the aim of the present work was to identify ticks associated with bats from Tuxpan de Rodriguez Cano, Veracruz, México. Bats were captured using mist nets and were visually inspected for tick presence. The ectoparasites were identified morphologically and molecularly with the use of the mitochondrial marker 16SrDNA, and molecular detection of several bacterial and protozoan pathogens was also performed. Twenty-five bats of 9 species were inspected. We collected 7 tick larvae morphologically identified as Ornithodoros hasei from a female black-winged little yellow bat (Rhogeessa tumida). Sequencing of the 400-bp fragment of the 16S rDNA gene, demonstrated a similarity of 96 % (373/388 bp) with O. hasei from Argentina and Brazil. In addition, the presence of Coxiella sp. was confirmed. Our findings provide relevant information on the biology of O. hasei by identifying R. tumida as a new host, providing the most north-eastern record for the geographical distribution of this tick in the Gulf of México and detecting the presence of a new endosymbiont in this tick.

Key words: Bats; biodiversity; ectoparasites; endosymbiont; México; soft tick.

Las garrapatas blandas representan un grupo desatendido de ectoparásitos asociadas con una amplia gama de vertebrados. En México se han reportado 24 especies, la mayoría parasitando murciélagos. Varias especies son vectores competentes de una amplia gama de microorganismos patógenos. Por esta razón, el objetivo del presente trabajo fue identificar garrapatas asociadas con murciélagos de Tuxpan de Rodríguez Cano, Veracruz, México. Los murciélagos fueron capturados usando redes de niebla y fueron inspeccionados visualmente para detectar la presencia de garrapatas. Los ectoparásitos se identificaron morfológica y molecularmente con el uso del marcador mitocondrial 16SrDNA. Adicionalmente, se realizó la detección molecular de varios patógenos bacterianos y protozoarios. Se inspeccionaron 25 murciélagos de 9 especies. Se recolectaron 7 larvas de garrapatas identificadas morfológicamente como Ornithodoros hasei de una hembra de murciélago amarillo de alas negras (Rhogeessa tumida). La secuenciación del fragmento de 400 pb del gen 16S rDNA demostró una similitud del 96 % (373/388 pb) con O. hasei de Argentina y Brasil. Adicionalmente, se confirmó la presencia de Coxiella sp. Nuestros hallazgos proporcionan información relevante sobre la biología de O. hasei al identificar a R. tumida como un nuevo huésped, proporcionando el registro más nororiental para la distribución geográfica de esta garrapata en el Golfo de México y detectando la presencia de un nuevo huésped-endosimbionte en esta garrapata.

Palabras clave: Biodiversidad; ectoparásitos; endosimbionte; garrapatas blandas; México; murciélagos.

© 2024 Asociación Mexicana de Mastozoología, www.mastozoologiamexicana.org

Ticks are hematophagous ectoparasites associated with a great variety of vertebrates, among which mammals stand out. The existence of 3 living families and a fossil one is recognized, among which the soft ticks of the Argasidae family are prominent members. Currently, this family is composed by near 220 known species, which exhibit nesting behavior, as they remain within the dens of the hosts and feed on multiple occasions throughout their life cycle (Mans et al. 2019). Soft ticks are vectors of a wide range of pathogenic microorganisms, among which members of the genera Borrelia and Rickettsia are recognized (Parola and Raoult 2001). In particular, many members of the genus Ornithodoros are parasites of bats (Sándor et al. 2021).

Twenty-four species of the genus Ornithodoros occur in México, more than half of them are associated with bats (Guzmán-Cornejo et al. 2019). However, in the country, information on microorganisms related to Ornithodoros that parasitize bats is scarce and scattered. A single record described Rickettsia lusitaniae in Ornithodoros yumatensis from the Yucatán Peninsula, and in an undetermined Ornithodoros sp. of unknown geographic origin (Sánchez-Montes et al. 2016; Hornok et al. 2019). Nevertheless, in other countries of the Neotropical region, a wide range of potentially zoonotic microorganisms (e.g., Borrelia sp.) have been identified in ticks parasitizing bats of the Emballonuridae, Mormoopidae, Noctilionidae, Phyllostomidae and Vespertilionidae families (Muñoz-Leal et al. 2021).

Ornithodoros hasei, a member of the Ornithodoros talaje group, is one of the most common and abundant soft ticks associated with bats across the Neotropical region and exhibits a wide distribution that ranges from northern México to Argentina (Colombo et al. 2020). This species has been recorded in association with 42 species of 26 genera of bats of the Emballonuridae, Mormoopidae, Noctilionidae, Phyllostomidae and Vespertilionidae families and 1 rodent species in 11 countries of the Neotropical region (Figure 1; Appendix 1). In México, records of O. hasei are scarce, with a first report made in the states of Yucatán and Sinaloa in 1963, and again in 2000 for both states (Kohls et al. 1965; Guzmán-Cornejo et al. 2019).

This tick species has recently been studied in South America for the presence of microorganisms, among which the presence of Candidatus Rickettsia wissemanii stands out, a new species from the spotted fever group (whose pathogenicity is unknown), which was detected in Argentina, Brazil, and French Guiana (Tahir et al. 2016; Luz et al. 2019; Colombo et al. 2020). Additionally, an uncharacterized member of the Bartonella genus has been detected in French Guiana (Davoust et al. 2016). However, no studies have been performed to identify other potentially pathogenic bacterial or parasitic agents in this tick species.

The aim of this study was to perform a morphological and molecular identification of soft ticks collected from bats, and to provide new records of tick-bat associations in México. Moreover, we aimed to detect tick-borne bacteria (Anaplasma, Bartonella, Borrelia, Coxiella, Ehrlichia, and Rickettsia) and protozoa (Babesia and Hepatozoon) in the collected ticks.

During a field journey on February 27, 2020, we trapped bats using mist nets at the ecotourism centre San Basilio (20º 58´03´´N, 97º 21´ 12´´W) located in the municipality of Tuxpan de Rodríguez Cano, Veracruz. Bats were collected from 20 to 22 hr. The specimens were carefully removed from the nets, identified with the help of specialized morphological keys of Medellín et al. (2007), and individualized in blanket bags. Each specimen was checked externally for the presence of ticks, which were collected with the help of forceps and fixed in 70 % ethanol. Once the procedure was finished, the mammals were released in situ.

For DNA extraction from ticks, a small incision was made behind the fourth pair of legs with a sterile needle for each specimen. Subsequently, the individuals were placed in a Cheelex-100 solution following the methodology of Aguilar-Domínguez et al. (2019). The exoskeletons were recovered and mounted on semi-permanent slides using Hoyer’s medium to perform a morphological identification following Kohls et al. (1965). For molecular identification of the specimens, a 400-bp fragment of the mitochondrial 16S rRNA gene was amplified using the primers and thermal conditions according to Norris et al. (1996). Subsequently, conventional polymerase chain reactions (PCRs) were performed using specific primers to detect of several bacterial and protozoan pathogens, which are listed in Appendix 2. The reaction mixture was prepared in a final volume of 25 μL, using 12.5 μL of 2× GoTaq Green Master Mix (Promega Corporation, Madison, WI, USA), 2 μL of primers (2 μM, 1 μL each), 8.5 μL nuclease-free water and 500 ng DNA of each sample (2 μL).

Negative (nuclease free water) and positive (DNA of Anaplasma ovis [MG733099], Bartonella vinsonii vinsonii [KT326174], Ehrlichia canis [MH917714], Hepatozoon sp. from Crotalus molossus [MT385834], Rickettsia amblyommatis [KX363842], and Theileria equi [MT828308]) controls were included. Amplicons were sequenced at Macrogen, Korea. Finally, the sequences generated were compared to those deposited in GenBank using the BLAST-n tool. Additionally, for ticks and tick-borne pathogens, we made a phylogenetic reconstruction using the Maximum Likelihood method. We selected the best nucleotide substitution model using the Bayesian information criterion (BIC) and the maximum likelihood value (lnL) in MEGA v.10. Branch support was estimated using 10000 non-parametric bootstraps. Finally, to ascertain genetic diversity between the tick populations recovered in this study and those deposited in GenBank, we calculated the number of haplotypes and the number of unique haplotypes in DNAsp 5.10. To identify the relationship among haplotypes, minimal union networks were constructed using the program PopArt.

Bats collected correspond to 9 species of 2 families: Phyllostomidae (23 specimens: 15 Artibeus jamaicensis, 1 Artibeus lituratus, 3 Chiroderma salvini, 1 Dermanura phaeotis, 1 Glossophaga soricina, 1 Platyrrhinus helleri, and 1 Sturnira ludovici) and Vespertilionidae (2 specimens: 1 Epistecus furinalis, and 1 Rhogeesa tumida). A single R. tumida female was recorded to be infested by ticks. A total of 7 larvae were identified morphologically as O. hasei, because of the following traits: dorsal plate pyriform, 14 pairs of dorsolateral setae and 4 pairs of central setae; pointed hypostome with 3 rows of denticles (19 denticles in row I; 18 in row II, and 9 in row III); dentition formula 3/3 in the anterior two-thirds, then 2/2 towards the base (Figure 2a-c; Kohls et al. 1965). We recovered 400-bp sequences of the 16S-rRNA gene from all collected specimens. The sequences showed a similarity of 99 %–100 % (388/399 bp) among each other and 96 % (373/388 bp) with sequences of O. hasei from Brazil and Argentina (GenBank accession numbers MH600060 and MT077216). The phylogenetic analysis confirmed the identity of the species, grouping the reference sequences with those generated in the present work in a monophyletic clade with a support value of 99 % (Figure 2d).

We detected the presence of 9 haplotypes of O. hasei (Figure 2b). The most frequent haplotype detected was H5, with 3 sequences (27.3 %), followed by haplotype H2 with 2 (18.2 %). The remaining haplotypes were recorded once each one. None of the haplotypes was detected in more than one country. In México, only 2 haplotypes were detected that differ between 12 and 13 mutational steps with the other haplotypes detected in South America (Figure 2e).

For tick-borne pathogen detection, all ticks were tested individually by PCR. Of these, 2 ticks (28.5 %) produced the expected PCR products for the 16S-rRNA gene of Coxiella. The sequences obtained were 100 % (615/615 bp) identical to each other; according to the BLAST analysis, our sequences were 99 % (610/615 bp) identical to that of the C. burnetii isolate of Hyalomma asiaticum from China (GenBank accession number MN880312). The phylogenetic analysis grouped our sequences in a monophyletic clade (support value of 95 %) with those of Coxiella endosymbionts isolated from other Ornithodoros species and several linages of C. burnetii, which belong to clade A (Figure 3).

The presence of DNA from other bacterial or parasitic agents was not detected. The obtained sequences were deposited in GenBank under the following accessions numbers: Ornithodoros 16S-rDNA (OL881234-36), and Coxiella 16S-rDNA (OL898409).

In México, records of ticks associated with bats of the Vespertilionidae family are scarce, with only 5 host species examined (Corynorhinus mexicanus, Myotis nigricans extremus, M. velifer, M. vivesi and, Parastrellus hesperus), which have been recorded in association with 5 soft tick species (Ornithodoros yumatensis, O. brodyi, O. hasei, O. dyeri, and O. rossi, respectively; Guzmán-Cornejo et al. 2019).

We identified for the first time the presence of a tick parasitizing R. tumida, particularly the soft tick O. hasei. Although Jones et al. (1972) mention the presence of O. hasei in R. tumida collected in Venezuela (Appendix 1), phylogenetic studies carried out identified the existence of the tumida-parvula species complex. Subsequent phylogenetic studies demonstrated the presence of 10 species of the genus Rhogeesa across the Neotropical region (Baird et al. 2009). In the case of R. tumida, this species has a restricted distribution ranging from northeastern México, through Central America, to the south of Brazil, Bolivia, and Ecuador, whereas the only species described for Venezuela is the tiny yellow bat (Rhogeessa minutilla), species in which the presence of O. hasei has been demonstrated in Colombia (Marinkelle and Grose 1981; Baird et al. 2009; Ceballos 2014). The present work increases the inventory of ectoparasites associated with R. tumida, since there are only historical records of the nycteribiid fly Basilia anomala from México (Guimaraes and D’Andretta 1956) and Guatemala (Theodor 1967) and the myobiid mite Acanthophthirius longus from Guatemala (Uchikawa and Baker 1993). To the best of our knowledge, there are only 3 previous historical records of O. hasei parasitizing members of the genus Rhogeessa: the tiny yellow bat (R. minutilla), one unidentified specimen from Venezuela, and the little yellow bat (R. parvula) from Colombia (Jones et al. 1972; Marinkelle and Grose 1981; Appendix 1). So, this work provides a new parasite–host association for this bat genus.

Our findings add a new location for O. hasei in México: this record represents the most northern finding of O. hasei on the Gulf of México, particularly in the transition zone with the Nearctic region (Guzmán-Cornejo et al. 2019). Furthermore, it is important to clarify that O. hasei is distributed from the north-west of México (Sinaloa) to Argentina and not from the southern part of México to Argentina, as mentioned by other authors (Davoust et al. 2016; Figure 1).

Additionally, this new record adds novel and valuable taxonomic information about the species. Since the description of this taxon in 1972 by Jones et al., there has been an intense debate regarding the taxonomy of this species. The variability in the total length of the specimens from different countries of South America and the Caribbean (Jones et al. 1972) has led to the proposal of the existence of possible cryptic species (Muñoz-Leal et al. 2018). The TCS network (statistical parsimony) revealed the presence of many unique and intermediate haplotypes (probably non-sampled haplotypes) from South American populations of O. hasei (Figure 3). This is consistent with the subsampling of this species throughout the Neotropical region, such as in the case of Amblyomma aureolatum from Brazil (Bitencourth et al. 2021). Our new data will help to elucidate the possible presence of a cryptic species complex or intraspecies variability. It is crucial to continue processing new morphological, molecular, and ecological data about O. hasei in order to clarify their taxonomic status.

Our current work also presents the first record of a Coxiella sp. in O. hasei, and the second one of this bacteria genus in a soft tick associated with bats, since the only previous record is from Ornithodoros peruvianus associated with Desmodus rotundus in Chile (Duron et al. 2015). In addition, our work represents the first molecular typification of Coxiella sp. in México since this bacterial genus was previously detected using Next Generation Sequencing in the soft tick Ornithodoros turicate from the Bolson tortoise (Ghopherus flavimarginatus) in the northern Mapimi Biosphere Reserve (Barraza-Guerrero et al. 2020). However, this technique does not discriminate between C. burnetii and Coxiella endosymbionts. In previous studies, C. burnetii had been detected in solid organs and blood of bats from Brazil (Ferreira et al. 2018). To date, C. burnetii is the only species confirmed to be a vertebrate pathogen, capable of causing a systemic disease, that has been reported in bats from Brazil. The molecular phylogeny of Coxiella identified the presence of 4 clades (named as A-D). All Coxiella clades except one (D) include pathogenic and endosymbiont linages. Recently, Brenner et al. (2021) determined that both groups (C. burnetii and Coxiella endosymbionts) evolved from a common pathogenic ancestor. However, the zoonotic potential of other endosymbiont Coxiella in vertebrates, particularly bats, is unknown. Since no biological samples were taken from the vertebrate host in the present study, it is unknown whether the host is infected with the agent.

On the other hand, Coxiella endosymbionts seem to be very common in soft ticks, especially in the genus Ornithodoros (Duron et al. 2015). Previous studies for the detection of Coxiella failed to demonstrate the presence of this microorganism in O. hasei populations from South America (Tahir et al. 2016). For this reason, our record represents the first molecular identification of Coxiella in ticks associated with bats in the Neotropical region.

Recently, Ca. R. wisemanni was detected at a high prevalence in O. hasei from Argentina, Brazil and French Guinea (Tahir et al. 2016; Luz et al. 2019; Colombo et al. 2020). However, this microorganism was not identified in our study, possibly due to the low number of samples analysed. Yet, its presence was not ruled out, and more studies should be carried out to understand its potential distribution in the most north-eastern populations of O. hasei.

The findings of the present work highlight the need to continue with the systematic study of microorganisms associated with soft ticks from Mexican bats, since very little is known about the microbiome of these ectoparasites, which represent an important component of biodiversity.

Acknowledgements

This paper is part of the requirements for obtaining a Doctoral degree at the Posgrado en Ciencias Biológicas, UNAM of E. Grostieta Rojas. Financing was granted by UNAM-PAPIIT AG201221. She receives a scholarship from CONAHCyT. We are very grateful to the owner and the staff of San Basilio Ecotourism Centre for the facilities to carry out this study. Also, to biology students of Facultad de Ciencias Biológicas y Agropecuarias region Tuxpan (FCBA) for their assistance in the fieldwork. Two anonymous reviewers contributed to improve this manuscript.

Literature cited

Acosta, I., et al. 2016. Ticks (Acari: Ixodidae, Argasidae) from humans, domestic and wild animals in the state of Espírito Santo, Brazil, with notes on rickettsial infection. Veterinary Parasitology, Regional Studies and Reports 3-4:66-69.

Aguilar-Domínguez, M., et al. 2019. Genetic structure analysis of Amblyomma mixtum populations in Veracruz State, México. Ticks and Tick-borne Diseases 10:86-92.

Almeida, A. P., et al. 2012. Coxiella symbiont in the tick Ornithodoros rostratus (Acari: Argasidae). Ticks and Tick-borne Diseases 3:203-206.

Baird, A. B., et al. 2009. Speciation by monobrachial centric fusions: a test of the model using nuclear DNA sequences from the bat genus Rhogeessa. Molecular Phylogenetics and Evolution 50:256-267.

Barraza-Guerrero, S. I., et al. 2020. General microbiota of the soft tick Ornithodoros turicata parasitizing the Bolson Tortoise (Gopherus flavomarginatus) in the Mapimi Biosphere Reserve, México. Biology 9:275.

Bitencourth, K., et al. 2021. Amblyomma aureolatum genetic diversity and population dynamics are not related to Spotted Fever epidemiological scenarios in Brazil.  Pathogens 10:1146.

Brenner, A. E., et al. 2021. Coxiella burnetii and related tick endosymbionts evolved from pathogenic ancestors. Genome Biology and Evolution 13:108.

Ceballos, G. (ed.). 2014. Mammals of México. Johns Hopkins University Press. Baltimore, U.S.A.

Colombo, V. C., et al. 2020. First detection of "Candidatus Rickettsia wissemanii" in Ornithodoros hasei (Schulze, 1935) (Acari: Argasidae) from Argentina. Ticks and Tick-Borne Diseases 11:101442.

Cooley, R. A., and G. M. Kohls. 1944. The Argasidae of North America, Central America, and Cuba. The American Midland Naturalist Monograph 1:152.

Davoust, B., et al. 2016. Evidence of Bartonella spp. in blood and ticks (Ornithodoros hasei) of bats, in French Guiana. Vector Borne and Zoonotic Diseases 16:516-519.

de Sousa, R., et al. 2006. Rickettsia sibirica isolation from a patient and detection in ticks, Portugal. Emerging Infectious Diseases 12:1103-1108.

Dick, C. W., et al. 2007. Bolivian Ectoparasites: A Survey of Bats (Mammalia Chiroptera). Comparative Parasitology 74:372-377.

Duron, O., et al. 2015. The recent evolution of a maternally-inherited endosymbiont of ticks led to the emergence of the Q Fever pathogen, Coxiella burnetii. PLoS Pathogens 11:e1004892.

Fairchild, G. B., et al. 1965. The ticks of Panama (Acarina: Ixodoidea). Pp. 167-219 in The Ectoparasites of Panama (Wenzel, W. R., and V. J. Tipton, eds.). R. R. Donnelley and Sons Co. Chicago, U.S.A.

Ferreira, M. S., et al. 2018. Coxiella and Bartonella spp. in bats (Chiroptera) captured in the Brazilian Atlantic Forest biome. BMC Veterinary Research 14:279.

Guimaraes, L. R., and M. A.V. D'Andretta. 1956. Sinopse dos Nycteribiidae (Diptera) do Novo Mondo. Arquivos De Zoologia 10:1-184.

Guzmán-Cornejo, C., et al. 2019. The soft ticks (Parasitiformes: Ixodida: Argasidae) of México: species, hosts, and geographical distribution. Zootaxa 4623:485-525.

Hornok, S., et al. 2019. Molecular detection of vector-borne bacteria in bat ticks (Acari: Ixodidae, Argasidae) from eight countries of the Old and New Worlds. Parasites and Vectors 12:50.

Jones, E. K., et al. 1972. The ticks of Venezuela (Acarina: Ixodoidea) with a key to the species of Amblyomma in the Western Hemisphere. Brigham Young University Science Bulletin, Biological Series 17:1-40.

Kohls, G. M., et al. 1965. The systematics of the subfamily Ornithodorinae (Acarina: Argasidae). II. Identification of the larvae of the Western Hemisphere and descriptions of 3 new species. Annals of the Entomological Society of America 58:331-364.

Luz, H. R., et al. 2019. Detection of “Candidatus Rickettsia wissemanii” in ticks parasitizing bats (Mammalia: Chiroptera) in the northern Brazilian Amazon. Parasitol Research 118:3185-3189.

Mans, B. J., et al. 2019. Argasid and ixodid systematics: Implications for soft tick evolution and systematics, with a new argasid species list. Ticks and Tick-borne Diseases 10:219-240.

Marinkelle, C. J., and E. S. Grose. 1981. A list of ectoparasites of Colombian bats. Revista de Biologia Tropical 29:11-20.

Masuzawa, T., et al. 1997. Identification of rickettsiae isolated in Japan as Coxiella burnetii by 16S rRNA sequencing. International Journal of Systematic Bacteriology 47:883-884.

Matheson, R. 1935. Three new species of ticks, Ornithodoros (Acarina:Ixodoidea). Journal of Parasitology 21:347-353.

Medellín, R. A., et al. 2007. Identificación de los murciélagos de México, Clave de campo, segunda edición. Instituto de Ecología, UNAM. México City, México.

Muñoz-Leal, S., et al. 2016. Ticks infesting bats (Mammalia: Chiroptera) in the Brazilian Pantanal. Experimental & Applied Acarology 69:73-85.

Muñoz-Leal, S., et al. 2018. New records of ticks infesting bats in Brazil, with observations on the first nymphal stage of Ornithodoros hasei. Experimental and Applied Acarology 76:537-549.

Muñoz-Leal, S., et al. 2021. Novel Borrelia genotypes in bats from the Macaregua Cave, Colombia. Zoonoses and Public Health 68:12-18.

Murphy, D. S., et al. 2017. Prevalence and distribution of human and tick infections with the Ehrlichia muris-Like agent and Anaplasma phagocytophilum in Wisconsin, 2009-2015.  Vector Borne and Zoonotic Diseases 17:229-236.

Nava, S., et al. 2007. The ticks (Acari: Ixodida: Argasidae, Ixodidae) of Paraguay. Annals of Tropical Medicine and Parasitology 101:255-270.

Norman, A. F., et al. 1995. Differentiation of Bartonella-like isolates at the species level by PCR-restriction fragment length polymorphism in the citrate synthase gene.  Journal of Clinical Microbiology 33:1797-1803.

Norris, D. E., et al. 1996. Population genetics of Ixodes scapularis (Acari: Ixodidae) based on mitochondrial 16S and 12S genes. Journal of Medical Entomology 33:78-89.

Ossa-López, P. A., et al. 2023. Morphological and molecular confirmation of Ornithodoros hasei (Schulze, 1935) (Acari: Argasidae) in Colombia. Ticks and Tick-Borne Diseases 14:102142.

Parola, P., and D. Raoult. 2001. Ticks and tickborne bacterial diseases in humans: an emerging infectious threat. Clinical Infectious Diseases 32:897-928.

Rudenko, N., et al. 2009. Borrelia carolinensis sp. nov., a new (14th) member of the Borrelia burgdorferi sensu lato complex from the southeastern region of the United States. Journal of Clinical Microbiology 47:134-141.

Sánchez-Montes, S., et al. 2016. Rickettsia lusitaniae associated with Ornithodoros yumatensis (Acari: Argasidae) from 2 caves in Yucatan, México. Ticks and Tick-Borne Diseases 7:1097-1101.

Sándor, A. D., et al. 2021. Argasid ticks of palearctic bats: distribution, host selection, and zoonotic importance. Frontiers Veterinary Science 8:684737.

Schulze, P. 1935. Zur vergleichenden Anatomie der Zecken. (Das Sternale, die Mundwerkzeuge, Analfurchen und Analbeschilderung ihre Bedeutung, Ursprünglichkeit und Luxurieren). Zeitschrift für Morphologie und Ökologie der Tiere 30:1-40.

Tahir, D., et al. 2016. New Rickettsia species in soft ticks Ornithodoros hasei collected from bats in French Guiana. Ticks and Tick-Borne Diseases 7:1089-1096.

Theodor, O. 1967. An illustrated catalogue of the Rothschild collection of Nycteribiidae (Diptera) in the British Museum (Natural History) with keys and short descriptions for the identification of subfamilies, general, species, and subspecies. London, England.

Uchikawa, K., and A. Baker. 1993. A new classification for the subgenera of the genus Acanthophthirius Perkins, with descriptions of twelve new taxa (Acarina, Trombidiformes, Myobiidae). Systematic Parasitology 25:81-108.

Ujvari, B., et al. 2004. High prevalence of Hepatozoon spp. (Apicomplexa: Hepatozoidae) infection in water pythons (Liasis fuscus) from tropical Australia. Journal of Parasitology 90:670-672.

Associated editor: Gloria Tapia Ramírez.

Submitted: March 6, 2024; Reviewed: April 9, 2024.

Accepted: April 30, 2024; Published on line: May 27, 2024.

Appendix 1

List of known host species and localities of the soft tick Ornithodoros hasei across the Neotropical region. NR: Not recorded; F: Female; M: Male; N: Nymph; L: Larvae.

Order

Family

Scientific name

Common name

Country

Locality

Tick stage

Collection date

Bacterial detected

Reference

Chiroptera

Emballonuridae

Peropteryx sp.

-

Venezuela

10 km S, 18 km W Machiques, Kasmera, Zulia

2L

15 April, 1968

NR

Jones et al. 1972

Molossidae

Eumops sp.

-

Bolivia

San Joaquin, Beni and Magdalena

NR

March-September, 1963

NR

Kohls et al. 1965

Molossus bondae

Bonda Mastiff Bat

Venezuela

About 10 km NW Urama, Yaracuy

1L

14 March, 1966

NR

Jones et al. 1972

Molossus bondae

Bonda Mastiff Bat

Venezuela

Montalbán, Carabobo

2L

5 September, 1967

NR

Jones et al. 1972

Molossus molossus

Pallas's mastiff bat

Colombia

Vereda El Socorro, Finca Los Trompillos, municipality of Arauca, Department of Arauca, Orinoquia region

11L

1 November 2021

NR

Ossa-López et al. 2023

Molossus molossus

Pallas's mastiff bat

Colombia

NR

3

NR

NR

Marinkelle and Grose 1981

Molossus nigricans

Ebon Mastiff Bat

Mexico

Piste, Yucatán

43L

July 20-21, 1962

NR

Kohls et al. 1965

Molossus rufus

Black Mastiff Bat

Venezuela

1/4 km N San Juan, E side Río Manapiare, Harder

4L

5 July, 1967

NR

Jones et al. 1972

Molossus rufus

Black Mastiff Bat

Venezuela

14 km E Cumaná, Hda. Guanital, Sucre

12L

9 December, 1966

NR

Jones et al. 1972

Molossus rufus

Black Mastiff Bat

Venezuela

2 km N Tamanaco, near San Juan Río Manapiare, Harder

1L

19 July, 1967

NR

Jones et al. 1972

Molossus rufus

Black Mastiff Bat

Venezuela

2 km N Tamanaco, near San Juan, Río Manapiare, Harder

2L

17 July, 1967

NR

Jones et al. 1972

Molossus rufus

Black Mastiff Bat

Venezuela

2-3 km N, 4 km W Caripe, San Agustín, Monagas

36L

26 June-07 July 1967

NR

Jones et al. 1972

Molossus rufus

Black Mastiff Bat

Venezuela

38 km NW Pto. Paez, Hato Cariben, Río Cinaruco, Apure

1M, 1N

17 January, 1966

NR

Jones et al. 1972

Molossus rufus

Black Mastiff Bat

Venezuela

38 km NW Pto. Paez, Río Cinaruco, Apure

1F, 2N, 1L

17 January, 1966

NR

Jones et al. 1972

Molossus rufus

Black Mastiff Bat

Venezuela

46 km NE Pto. Paez, Hato Cariben, Río Cinaruco, Apure

1M, 1N, 1L

13,17 January, 1965

NR

Jones et al. 1972

Molossus rufus

Black Mastiff Bat

Venezuela

46 km NE Pto. Paez, Hato Cariben, Río Cinaruco, Apure

1L

28 July, 1965

NR

Jones et al. 1972

Molossus rufus

Black Mastiff Bat

Venezuela

59 km SE , km 74, El Manaco, Bolivar

35L

8-17 June, 1966

NR

Jones et al. 1972

Molossus rufus

Black Mastiff Bat

Venezuela

Ca. 2 km N Tamanaco, near San Juan, Río Manapiare, Harder

7L

24 July, 1967

NR

Jones et al. 1972

Molossus rufus

Black Mastiff Bat

Venezuela

Near San Agustín, Monagas

25L

8 July 1967

NR

Jones et al. 1972

Molossus rufus

Black Mastiff Bat

Venezuela

Near Tamanaco, ca. 4 km NE San Juan, Río Manapiare, Harder

14L

14,19 July, 1967

NR

Jones et al. 1972

Molossus rufus

Black Mastiff Bat

Venezuela

Tamanaco, ca. 4 km NE San Juan, Río Manapiare, Harder

2L

14 July, 1967

NR

Jones et al. 1972

Molossus rufus

Black Mastiff Bat

Venezuela

Tamanaco, ca. 4 km NE San Juan, Río Manapiare, T. F. Amazonas

6L

14 July, 1967

NR

Jones et al. 1972

Molossus rufus

Black Mastiff Bat

Venezuela

Tamanaco, near San Juan, Río Manapiare, Harder

2L

25 July, 1967

NR

Jones et al. 1972

Molossops temminckii

Dwarf Dog-faced Bat

Argentina

Sociedad Rural “Las Colonias”, Esperanza city

5L

January 2018

NR

Colombo et al. 2020

Mormoops megalophylla

Peters's Ghost-faced Bat

Venezuela

9 km N, 4 km E Guiria near Río Salado, Sucre

1L

7 July, 1967

NR

Jones et al. 1972

Neoplatymops mattogrossensis

Mato Grosso Dog-faced Bat

Venezuela

33 km SSE Puerto Ayacucho, El Raudal, Harder

25L

4, 10 October, 1967

NR

Jones et al. 1972

Tadarida sp.

-

Venezuela

38 km NW Pto. Paez, Río Cinaruco, Apure

1L

21 January, 1966

NR

Jones et al. 1972

Tadarida sp.

-

Venezuela

Boca Mavaca, Río Orinoco, 84 km SSE Esperalda, Harder

5L

14 Frebruary, 1966

NR

Jones et al. 1972

Tadarida sp.

-

Venezuela

Río Cunucunuma, near Belén, Harder

3L

13 January, 1967

NR

Jones et al. 1972

Noctilionidae

Noctilio albiventris

Lesser Bulldog Bat

Brazil

Mato Grosso do Sul state

3L

2006-2008

NR

Muñoz-Leal et al. 2018

Noctilio albiventris

Lesser Bulldog Bat

Colombia

Vereda El Socorro, Finca Los Trompillos, municipality of Arauca, Department of Arauca, Orinoquia region

86L

31 October 2021, 1 November 2021

NR

Ossa-López et al. 2023

Noctilio albiventris

Lesser Bulldog Bat

Colombia

Vereda El Socorro, Finca Marsella, municipality of Arauca, Department of Arauca, Orinoquia region

43L

3 November 2021

NR

Ossa-López et al. 2023

Noctilio albiventris

Lesser Bulldog Bat

Colombia

NR

4

NR

NR

Marinkelle and Grose 1981

Noctilio albiventris

Lesser Bulldog Bat

French Guiana

Saint-Jean-du-Maroni

354L

January 2013

31L Candidatus Rickettsia wissemanii

Tahir et al. 2016

Noctilio albiventris

Lesser Bulldog Bat

French Guiana

Saint-Laurent-du-Maroni

355L

January and February 2013

4L Bartonella sp.

Davoust et al. 2016

Noctilio albiventris

Lesser Bulldog Bat

Trinidad

Santa Cruz,6 km by road W of Ascención

7L

13 August 1985

NR

Dick et al. 2007

Noctilio leporinus

Greater Bulldog Bat

Bolivia

San Joaquin, Beni and Magdalena

Aprox 575L

March-September, 1963

NR

Kohls et al. 1965

Noctilio leporinus

Greater Bulldog Bat

Brazil

Mato Grosso do Sul state

NR

2006-2008

NR

Muñoz-Leal et al. 2016

Noctilio leporinus

Greater Bulldog Bat

Brazil

Serinhaém, Pernambuco

19L, 2N

nov, 2016

NR

Muñoz-Leal et al. 2018

Noctilio leporinus

Greater Bulldog Bat

Colombia

NR

2

NR

NR

Marinkelle and Grose 1981

Noctilio leporinus

Greater Bulldog Bat

Costa Rica

9 mi ENE of Puerto Golfito, Puntarenas Province

29L

March 15, 1963

NR

Kohls et al. 1965

Noctilio leporinus

Greater Bulldog Bat

Nicaragua

Rama, Bluefiels

2L

April 29, 1963

NR

Kohls et al. 1965

Noctilio leporinus

Greater Bulldog Bat

Panama

Yard of the Panama Hospital, Panama City

32L

March 17, 1931

NR

Matheson 1935

Noctilio leporinus

Greater Bulldog Bat

Panama

Summit Canal Zone

NR

September 30, 1932

NR

Matheson 1935

Noctilio leporinus

Greater Bulldog Bat

Panama

Pacora

1N, several larvae

June 21, 22, July 26, 1961

NR

Fairchild et al. 1965

Noctilio leporinus

Greater Bulldog Bat

Panama

Navy firing point, Galeta Point, Canal Zone

2N

November 19, 1959

NR

Fairchild et al. 1965

Noctilio leporinus

Greater Bulldog Bat

Paraguay

Fortín Juan de Zalazar

3L

25 September 1973

NR

Nava et al. 2007

Noctilio leporinus

Greater Bulldog Bat

Paraguay

Fortín Juan de Zalazar

2L

27 September 1973

NR

Nava et al. 2007

Noctilio leporinus

Greater Bulldog Bat

Trinidad

Avocat

10L**

September 21, 1961

NR

Kohls et al. 1965

Noctilio leporinus

Greater Bulldog Bat

Trinidad

North Manzanilla

21L

February 28, 1957

NR

Kohls et al. 1965

Noctilio leporinus

Greater Bulldog Bat

Venezuela

19 km NW Urama, Yaracuy

50L

9 March, 1966

NR

Jones et al. 1972

Noctilio leporinus

Greater Bulldog Bat

Venezuela

2 km N Tamanaco, near San Juan Río Manapiare, Harder

75L

18 July, 1967

NR

Jones et al. 1972

Noctilio leporinus

Greater Bulldog Bat

Venezuela

2 km N Tamanaco, near San Juan, Río Manapiare, T. F. Amazonas

88L

17-19 August, 1967

NR

Jones et al. 1972

Noctilio leporinus

Greater Bulldog Bat

Venezuela

20 km SSE Puerto Ayacucho Las Queseras, Harder

8L

24 September, 1967

NR

Jones et al. 1972

Noctilio leporinus

Greater Bulldog Bat

Venezuela

23 km NW Valera, near Agua Santa, Trujillo

8L

24 August, 1965

NR

Jones et al. 1972

Noctilio leporinus

Greater Bulldog Bat

Venezuela

35 km NW Pto. Cabello, Boca de Yaracuy, Yaracuy and Falcón

92L

22, 29 October, 1965; 2 October, 1965

NR

Jones et al. 1972

Noctilio leporinus

Greater Bulldog Bat

Venezuela

38 km NW Pto. Paez, Río Cinaruco, Apure

255L

17 January 1966

NR

Jones et al. 1972

Noctilio leporinus

Greater Bulldog Bat

Venezuela

42 km WNW ENcontrados, El Rosario, Zulia

4L

5 March, 1968

NR

Jones et al. 1972

Noctilio leporinus

Greater Bulldog Bat

Venezuela

46 km NE Pto. Paez, Hato Caribean, Rio Cinaruco, Apure

2M, 4F, 3N, 863L

15 July 1965-17 January, 1966

NR

Jones et al. 1972

Noctilio leporinus

Greater Bulldog Bat

Venezuela

5 km E Río Chico, nr. Puerto Tuy, Miranda

59L

5, 17 September, 1966

NR

Jones et al. 1972

Noctilio leporinus

Greater Bulldog Bat

Venezuela

About 10 km NW Urama, Yaracuy

1L

11 March, 1966

NR

Jones et al. 1972

Noctilio leporinus

Greater Bulldog Bat

Venezuela

About 10 km NW Urama, Yaracuy

3L

14 March, 1966

NR

Jones et al. 1972

Noctilio leporinus

Greater Bulldog Bat

Venezuela

Moracoy, near San Juan, W side Río Manapiare, Harder

105L

24 July, 1967

NR

Jones et al. 1972

Noctilio leporinus

Greater Bulldog Bat

Venezuela

Near Moracoy, ca. 15 km down Río Manapiare from San Juan, Harder

100L

14 July, 1967

NR

Jones et al. 1972

Noctilio leporinus

Greater Bulldog Bat

Venezuela

Near San Juan, E side Rio Manapiare, Harder

1L

19 July, 1967

NR

Jones et al. 1972

Noctilio leporinus

Greater Bulldog Bat

Venezuela

San Juan, Río Manapiare, Harder

57L

14 July, 1967

NR

Jones et al. 1972

Noctilio leporinus

Greater Bulldog Bat

Venezuela

San Juan Río Manapiare, Harder

100L

20 July, 1967

NR

Jones et al. 1972

Noctilio leporinus

Greater Bulldog Bat

Venezuela

W side Río Manapiare. near San Juan, Harder

200L

24 July, 1967

NR

Jones et al. 1972

Noctilio leporinus

Greater Bulldog Bat

Venezuela

Yaracuy-Carabobo border, NW of Urama, Yaracuy and Carabobo

54L

17 March, 1966

NR

Jones et al. 1972

Noctilio leporinus/Myotis albescens

Greater Bulldog Bat/Silver-tipped Myotis

Venezuela

Ca. 2 km N Tamanaco, nr. San Juan, Río Manapiare, Harder

11L

18, 26 July, 1967

NR

Jones et al. 1972

Noctilio leporinus

Greater Bulldog Bat

Venezuela

10 km E Río Chico nr. Ticarigua La Laguna, Miranda

50L

9 November, 1966

NR

Jones et al. 1972

Noctilio leporinus

Greater Bulldog Bat

Venezuela

21 km E Cumaná, Hda. Tunantal, Sucre

51L

10, 17 December, 1966

NR

Jones et al. 1972

Noctilio leporinus

Greater Bulldog Bat

Venezuela

38 km NW Pto. Paez, Río Cinaruco, Apure

1L

13 January, 1966

NR

Jones et al. 1972

Noctilio leporinus

Greater Bulldog Bat

Venezuela

42 km WNW ENcontrados, El Rosario, Zulia

2L

5, 28 March, 1968

NR

Jones et al. 1972

Noctilio leporinus

Greater Bulldog Bat

Venezuela

5 km E Río Chico nr. Puerto Tuy, Miranda

5L

17 November, 1966

NR

Jones et al. 1972

Noctilio sp.

NR

Panama

Gamboa (canal Zone), pipeline road

NR

May 14, 1962

NR

Fairchild et al. 1965

Phyllostomidae

Artibeus jamaicensis

Jamaican Fruit-eating Bat

Colombia

NR

54

NR

NR

Marinkelle and Grose 1981

Artibeus jamaicensis s.l.

Jamaican Fruit-eating Bat

Venezuela

14 km S, 45 Km E Caicara, Hato La Florida, Bolivar

35L

NR

NR

Jones et al. 1972

Artibeus jamaicensis s.l.

Jamaican Fruit-eating Bat

Venezuela

5 km NW Guasipati, Bolivar

6L

29 April, 1966

NR

Jones et al. 1972

Artibeus jamaicensis s.l.

Jamaican Fruit-eating Bat

Venezuela

San Juan Río Manapiare, Harder

1L

24 July, 1967

NR

Jones et al. 1972

Artibeus lituratus

Great Fruit-eating Bat

Brazil

Pinheiros, Espírito Santo

17L

2012

NR

Acosta et al. 2016

Artibeus lituratus

Great Fruit-eating Bat

Costa Rica

Majica Ranch, Guanacaste Province

16L

August 10, 1960

NR

Kohls et al. 1965

Artibeus planirostris

Flat-faced Fruit-eating Bat

Brazil

Mato Grosso do Sul state

289 L

2006-2008

NR

Muñoz-Leal et al. 2016

Artibeus planirostris

Flat-faced Fruit-eating Bat

Brazil

Private Reserve of the Natural Patrimony Serra das Almas, Municipality of Crateús, state of Ceará

296L

July 2012, February 2013

NR

Luz et al. 2019

Artibeus planirostris

Flat-faced Fruit-eating Bat

Brazil

southeastern region of the Amapá state

160L

October 2016 and November 2017

1 pool Candidatus R. wissemanii

Luz et al. 2019

Carolia perspicillata

Seba's Short-tailed Bat

Brazil

Tamandaré, Pernambuco

34L, 17N

May-15

NR

Muñoz-Leal et al. 2018

Carollia perspicillata

Seba's Short-tailed Bat

Venezuela

W side Río Manapiare, near San Juan, Harder

1L

24 July, 1967

NR

Jones et al. 1972

Carollia sp.

-

Venezuela

Near Tamanaco, ca. 4 km NE San Juan, Río Manapiare, Harder

1L

19 July, 1967

NR

Jones et al. 1972

Chiroderma salvini

Salvin's Big-eyed Bat

Venezuela

3 km N, 4 km W Caripe, San Agustin, Monagas

1L

27 July, 1967

NR

Jones et al. 1972

Desmodus rotundus

Common Vampire Bat

Venezuela

35 km NW Pto. Cabello, Boca de Yaracuy, Yaracuy and Falcón

1L

30 October, 1965

NR

Jones et al. 1972

Desmodus rotundus

Common Vampire Bat

Venezuela

38 km NW Pto. Paez, Río Cinaruco, Apure

1L

13 January, 1966

NR

Jones et al. 1972

Glossophaga longirostris

Miller's Long-tongued Bat

Venezuela

46 km NE Pto. Paez, Hato Cariben, Rio Cinaruco, Apure

1L

July 14 1965

NR

Jones et al. 1972

Glossophaga soricina

Pallas's Long-tongued Bat

Brazil

Serinhaém, Pernambuco

3L

November, 2008

NR

Muñoz-Leal et al. 2018

Lonchorhina orinocensis

Orinocoan Sword-nosed Bat

Venezuela

46 km NE Pto. Paez, Hato Cariben, Rio Cinaruco, Apure

1L

24 July 1965

NR

Jones et al. 1972

Lophostoma brasiliense

Pygmy Round-eared Bat

Brazil

Private Reserve of the Natural Patrimony Serra das Almas, Municipality of Crateús, state of Ceará

6L

July 2012, February 2013

NR

Luz et al. 2019

Lophostoma silvicola

White-Throated Round-Eared Bat

Panama

Las Palmitas (Los Santos)

NR

January-February, 1962

NR

Fairchild et al. 1965

Gardnerycteris crenulatum

Striped Hairy-nosed Bat

Brazil

Mato Grosso do Sul state

3L

2006-2008

NR

Muñoz-Leal et al. 2016

Gardnerycteris crenulatum

Striped Hairy-nosed Bat

Venezuela

19 km NW Urama Km 40, Yaracuy and Carabobo

5L

26 October, 1965

NR

Jones et al. 1972

Phyllostomus discolor

Pale spear-nosed bat

Colombia

NR

1

NR

NR

Marinkelle and Grose 1981

Phyllostomus hastatus

Greater Spear-nosed Bat

Brazil

Mato Grosso do Sul state

55L

2006-2008

NR

Muñoz-Leal et al. 2016

Phyllostomus hastatus

Greater Spear-nosed Bat

Venezuela

13 km NW Urama, Río Yaracuy, Yaracuy

4L

20 March, 1966

NR

Jones et al. 1972

Phyllostomus hastatus

Greater Spear-nosed Bat

Venezuela

23 km NW Valera, near Agua Santa, Trujillo

2L

18 October, 1965

NR

Jones et al. 1972

Phyllostomus hastatus

Greater Spear-nosed Bat

Venezuela

5 km S, 25 km E Carúpano, Manacal, Sucre

1L

3 August, 1966

NR

Jones et al. 1972

Phyllostomus hastatus

Greater Spear-nosed Bat

Venezuela

6 km N Urama, Carabobo

9L

17 March, 1966

NR

Jones et al. 1972

Phyllostomus hastatus

Greater Spear-nosed Bat

Venezuela

About 11 km NW Urama, near El Central, Yaracuy

2L

14 March, 1966

NR

Jones et al. 1972

Phyllostomus hastatus

Greater Spear-nosed Bat

Venezuela

Moracoy, near Río Manapiare, Harder

25L

13 July, 1967

NR

Jones et al. 1972

Phyllostomus hastatus

Greater Spear-nosed Bat

Venezuela

San Juan, Río Manapiare, Harder

1L

17 July, 1967

NR

Jones et al. 1972

Phyllostomus hastatus

Greater Spear-nosed Bat

Venezuela

Near Moracoy, 15 km down Río Manapiare from San Juan, Harder

1L

NR

NR

Jones et al. 1972

Phyllostomus hastatus

Greater Spear-nosed Bat

Venezuela

San Juan, Río Manapiare, Harder

1L

17 July, 1967

NR

Jones et al. 1972

Phyllostomus hastatus

Greater Spear-nosed Bat

Venezuela

San Juan, Río Manapiare, Harder

50L

17 July, 1967

NR

Jones et al. 1972

Platyrrhinus helleri

Heller's Broad-Nosed Bat

Panama

Las Palmitas (Los Santos)

NR

January-February, 1962

NR

Fairchild et al. 1965

Platyrrhinus lineatus

White-lined Broad-nosed Bat

Brazil

Mato Grosso do Sul state

12 L

2006-2008

NR

Muñoz-Leal et al. 2016

Sturnira giannae

Gianna's Yellow-shouldered Bat

Venezuela

4 km NNW Caracas, Distrito Federal

8L

23 July, 1965

NR

Jones et al. 1972

Sturnira lilium

Little Yellow-shouldered Bat

Brazil

Caetité, Bahía

19L

December 2014

NR

Muñoz-Leal et al. 2018

Sturnira lilium

Little Yellow-shouldered Bat

Venezuela

14 km E Cumaná, Hda. Guanital, Sucre

30L

8-9 December, 1966

NR

Jones et al. 1972

Tonatia bidens

Greater Round-eared Bat

Brazil

Private Reserve of the Natural Patrimony Serra das Almas, Municipality of Crateús, state of Ceará

10L

July 2012, February 2013

NR

Luz et al. 2019

Tonatia sp.

-

Brazil

Private Reserve of the Natural Patrimony Serra das Almas, Municipality of Crateús, state of Ceará

4L

July 2012, February 2013

NR

Luz et al. 2019

Uroderma bilobatum

Tent-Making Bat

Panama

Las Palmitas (Los Santos)

NR

January-February, 1962

NR

Fairchild et al. 1965

Uroderma magnirostrum

Brown Tent-making Bat

Venezuela

Near San Juan, Río Manapiare, Harder

20L

17 July, 1967

NR

Jones et al. 1972

Vespertilionidae

Aeorestes cinereus

Hoary bat

Colombia

NR

1

NR

NR

Marinkelle and Grose 1981

Eptesicus diminutus

Diminutive Serotine

Argentina

Sociedad Rural “Las Colonias”, Esperanza city

3L

January 2018

3L Candidatus “R. wissemanii”

Colombo et al. 2020

Eptesicus furinalis

Argentinian Brown Bat

Argentina

Cululú river banks, town of Cululú

4L

January 2018

NR

Colombo et al. 2020

Eptesicus furinalis

Argentinian Brown Bat

Argentina

Santa Fe de la Veracruz city

3L

November 2017

NR

Colombo et al. 2020

Eptesicus orinocensis

Orinoco brown bat

Colombia

Vereda El Socorro, Finca Los Trompillos, municipality of Arauca, Department of Arauca, Orinoquia region

33L

1 November 2021

NR

Ossa-López et al. 2023

Eptesicus sp.

-

Argentina

Santa Fe de la Veracruz city

7L

November 2017

NR

Colombo et al. 2020

Myotis nigricans

Black Myotis

Venezuela

Gueiira

NR

NR

NR

Schulze 1935

Myotis velifer velifer

Cave Myotis

Mexico

Santa Lucía, Sinaloa

1L

July 28, 1963

NR

Kohls et al. 1965

Rhogeessa minutilla

Tiny Yellow Bat

Venezuela

114 km N, 32 km W Maracaibo near Cojoro, Zulia

4L

24 June, 1968

NR

Jones et al. 1972

Rhogeessa parvula

Little yellow bat

Colombia

NR

2

NR

NR

Marinkelle and Grose 1981

Rhogeessa sp.

-

Venezuela

19 km NW Urama, Yaracuy

4L

9 March, 1966

NR

Jones et al. 1972

Rodentia

Cricetidae

Necromys urichi

Northern Grass Mouse

Venezuela

3 km N, 4 km W Caripe, San Agustín, Monagas

1L

24 June 1967

NR

Jones et al. 1972

Questing

NR

Tree hole

NR

Brazil

Marajó Island, Belém, Pará

1F

June 1941

NR

Cooley and Kohls 1944

NR

Bat guano

NR

Panama

Pacora

Members of all life cycle

June 21, 22, July 26, 1961

NR

Fairchild et al. 1965

Appendix 2

Primers used for molecular detection of tickborne pathogens.

Parasite

Gene

Primers

Size (bp)

Positive control

Reference

Protozoa

Babesia spp.

18S rDNA

BAB01 CCGTGCTAATTGTAGGGCTAATACA

571

Babesia bigemina [MZ798903]

Almeida et al. 2012

BAB02

GCTTGAAACACTCTARTTTTCTCAAAG

Hepatozoon spp.

18S rDNA

HepF300

GTTTCTGACCTATCAGCTTTCGACG

495

Hepatozoon spp. from Crotalus molossus [MT385834]

Ujvari et al. 2004

HepR900

CAAATCTAAGAATTTCACCTCTGAC

Bacteria

Anaplasma/Ehrlichia spp.

16S rDNA

EHR01F

GCCTAACACATGCAAGTCGAACG

495

Anaplasma marginale [MN453603]

Murphy et al. 2017

EHR02R

GCCCAATAATTCCGAACAACG

Bartonella spp.

gltA

BhCS781.p

GGGGACCAGCTCATGGTGG

379

Bartonella quintana [OM108475]

Norman et al. 1995

BhCS1137.n

AATGCAAAAAGAACAGTAAACA

Borrelia spp.

flaB

FlaoutF

AARGAATTGGCAGTTCAATC

470

Borrelia burgdorferi [MK370994]

Rudenko et al. 2009

FlaoutR

GCATTTTCWATTTTAGCAAGTGATG

Coxiella spp.

23S rDNA

QR-FO

ATTGAAGAGTTTGATTCTGG

1000

Coxiella endosymbiont of Amblyomma mixtum [OM307605]

Masuzawa et al. 1997

QR-RO

CGGCCTCCCGAAGGTTAG

Rickettsia spp.

gltA

RpCS.415

GCTATTATGCTTGCGGCTGT

806

Rickettsia amblyommatys [MW539675]

de Sousa et al. 2006

RpCS.1220

TGCATTTCTTTCCATTGTGC

Figure 1. Geographic records of the soft tick, Ornithodoros hasei in the Neotropical region based on literature. We highlight in a yellow star the new geographic record found in Tuxpan, Veracruz on the eastern coast of México. Black points refer to previous records.

Figure 2. Morphological and molecular identification of Ornithodoros hasei. Optical micrographs of O. hasei larva collected in Tuxpan, Veracruz, México. a) Ventral view, b) dorsal plate, and c) hypostome; d) Phylogenetic reconstruction based on a partial fragment of the 16S-rDNA gene of several soft ticks inferred by Maximum Likelihood and based in the General Time Reversible Model (GTR). Sequences in the study are marked with solid figures. Bootstrap values are indicated at the nodes. Scale bar at the bottom represents the degree of divergence; e) haplotype network for the 16S-rDNA fragment of O. hasei from the Neotropical region. The colors correspond to each country. Black lines represent the mutational steps between each haplotype; black dots symbolize unrecovered haplotypes.

Figure 3. Phylogenetic reconstruction based on a partial fragment of the 16S-rDNA gene of several Coxiella linages inferred by Maximum Likelihood and based on Kimura two parameter Model (K2). Bootstrap values are indicated at the nodes. Scale bar at the bottom represents the degree of divergence. Sequences in the study are marked with solid figures.